osiria commited on
Commit
1118f77
β€’
1 Parent(s): 7a37673

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +171 -0
  2. app_it.py +173 -0
app.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ from unidecode import unidecode
3
+ from collections import Counter
4
+ import torch
5
+ import os
6
+ import gradio as gr
7
+ import numpy as np
8
+ import re
9
+ import string
10
+
11
+ from peft import PeftModel, PeftConfig
12
+ from transformers import AutoModelForCausalLM
13
+ from transformers import AutoTokenizer
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained("osiria/primo")
16
+ model = AutoModelForCausalLM.from_pretrained("osiria/primo")
17
+ model = PeftModel.from_pretrained(model, "osiria/primo")
18
+
19
+ class Prime:
20
+
21
+ def __init__(self, tokenizer, model):
22
+ self.tokenizer = tokenizer
23
+ self.model = model
24
+
25
+ def _check_sublist(self, lst, sub_lst, sep = " "):
26
+
27
+ l_type = type(lst[0])
28
+ lst = sep.join(list(map(str, lst)))
29
+ sub_lst = sep.join(list(map(str, sub_lst)))
30
+
31
+ return sub_lst in lst
32
+
33
+ def _exclude_sublist(self, lst, sub_lst, sep = " "):
34
+
35
+ l_type = type(lst[0])
36
+ lst = sep.join(list(map(str, lst)))
37
+ sub_lst = sep.join(list(map(str, sub_lst)))
38
+ lst = re.sub("\s+", " ", lst.replace(sub_lst, "")).strip().split(sep)
39
+ lst = list(map(l_type, lst))
40
+
41
+ return lst
42
+
43
+ def generate(self, prompt, message = "", sep = " [AI]", max_tokens = 100, excluded = [[40, 19]],
44
+ lookback = 5, resample_tokens = [27793], replace_tokens = {11302: 23318},
45
+ stop_tokens = [239],
46
+ sample = False,
47
+ top_k = 5):
48
+
49
+ if message:
50
+ prompt = message + ". " + prompt
51
+ prompt = prompt.replace("β€œ", '"').replace("”", '"').replace("’", "'")
52
+ if not sample:
53
+ top_k = 2
54
+ tokens = tokenizer.encode("[HUMAN] " + prompt + sep)
55
+ tokens_generated = []
56
+ checkpoint = 0
57
+ while tokens[-1] not in stop_tokens and len(tokens_generated) < max_tokens:
58
+ output = model.forward(input_ids=torch.tensor([tokens]).to(device)).logits[0,-1]
59
+ output = torch.softmax(output, dim = 0)
60
+ candidates = torch.topk(output, k = top_k)
61
+ if sample:
62
+ indices = candidates.indices
63
+ scores = candidates.values
64
+ next_token = indices[torch.multinomial(scores, 1)[0].item()]
65
+ else:
66
+ next_token = candidates.indices[0]
67
+ next_token = next_token.item()
68
+ sub_tokens = tokens_generated[-lookback:] + [next_token]
69
+ if next_token in resample_tokens:
70
+ next_token = candidates.indices[1]
71
+ next_token = next_token.item()
72
+ if len(tokens_generated) >= (lookback + 1) and next_token in tokens_generated[-2:]:
73
+ next_token = candidates.indices[1]
74
+ next_token = next_token.item()
75
+ elif len(tokens_generated) >= lookback and self._check_sublist(tokens_generated, sub_tokens):
76
+ if checkpoint:
77
+ tokens = tokens[:checkpoint]
78
+ break
79
+ else:
80
+ next_token = candidates.indices[1]
81
+ next_token = next_token.item()
82
+ sample = True
83
+ if next_token in replace_tokens:
84
+ next_token = replace_tokens[next_token]
85
+ tokens = tokens + [next_token]
86
+ tokens_generated = tokens_generated + [next_token]
87
+ if next_token == 5:
88
+ checkpoint = len(tokens)
89
+ for ex_lst in excluded:
90
+ tokens = self._exclude_sublist(tokens, ex_lst)
91
+ output = tokenizer.decode(tokens, skip_special_tokens=True)
92
+ output = output.split(sep)[-1].strip()
93
+ output = output[0].upper() + output[1:]
94
+ if output[-1] == tokenizer.decode(stop_tokens[0]):
95
+ output = output[:-1]
96
+ output = re.sub(" \d\.", "\nβ€’", output)
97
+ return output
98
+
99
+ model.eval()
100
+ device = torch.device("cuda")
101
+ prime = Prime(tokenizer = tokenizer, model = model)
102
+
103
+ def process_input(user_input, max_tokens, sample, top_k, message):
104
+ return prime.generate(prompt = user_input, message = message,
105
+ max_tokens = 150, sample = sample,
106
+ top_k = top_k)
107
+
108
+
109
+ header = '''--------------------------------------------------------------------------------------------------
110
+ <style>
111
+ .vertical-text {
112
+ writing-mode: vertical-lr;
113
+ text-orientation: upright;
114
+ background-color:red;
115
+ }
116
+ </style>
117
+ <center>
118
+ <body>
119
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
120
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
121
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">     </span>
122
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">     </span>
123
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
124
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
125
+ </body>
126
+ </center>
127
+ <br>
128
+ <center><img src="file/prime.png" width="100"></center>
129
+ '''
130
+
131
+ import gradio as gr
132
+ import random
133
+ import time
134
+
135
+ with gr.Blocks(title="primo", css="footer {visibility: hidden}", theme=gr.themes.Default(text_size="md", spacing_size="md")) as interface:
136
+ gr.Markdown(header)
137
+ with gr.Row():
138
+ with gr.Column(scale=1):
139
+ gr.Markdown("<b>options</b>")
140
+ max_tokens = gr.Slider(1, 250, value=150, label="max tokens", info="choose a limit between 1 and 250")
141
+ sample = gr.Checkbox(label="sampling")
142
+ top_k = gr.Slider(1, 5, value=1, label="creativity", info="choose a level between 1 and 5")
143
+ message = gr.Textbox(label="system message", value = "")
144
+ clear = gr.Button("clear chat")
145
+ with gr.Column(scale=8):
146
+ chatbot = gr.Chatbot(label = "prime").style(height=600)
147
+ msg = gr.Textbox(label = "query")
148
+
149
+ def user(user_message, history):
150
+ return gr.update(value="", interactive=False), history + [[user_message, None]]
151
+
152
+ def bot(history, message, max_tokens, sample, top_k):
153
+ bot_message = process_input(history[-1][0], message = message, max_tokens = max_tokens,
154
+ sample = sample, top_k = top_k)
155
+ history[-1][1] = ""
156
+ for character in bot_message:
157
+ history[-1][1] += character
158
+ time.sleep(0.05)
159
+ yield history
160
+
161
+ response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
162
+ bot, [chatbot, message, max_tokens, sample, top_k], chatbot
163
+ )
164
+ response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
165
+ clear.click(lambda: None, None, chatbot, queue=False)
166
+ with gr.Column(scale=1):
167
+ gr.Markdown("<b>warning</b>")
168
+ gr.Markdown("the model might behave erratically when presented with prompts which are too far away from its pre-training or fine-tuning and, because of the probabilistic nature of its generation mechanism, it might occasionally produce biased or offensive content with respect to gender, race, ideologies, and political or religious beliefs<br><br>these limitations imply that the model and its outputs should be used with caution, and should not be involved in situations that require the generated text to be fair or true")
169
+
170
+ interface.queue()
171
+ interface.launch()
app_it.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ from unidecode import unidecode
3
+ from collections import Counter
4
+ import torch
5
+ import os
6
+ import gradio as gr
7
+ import numpy as np
8
+ import re
9
+ import string
10
+
11
+ from peft import PeftModel, PeftConfig
12
+ from transformers import AutoModelForCausalLM
13
+ from transformers import AutoTokenizer
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained("osiria/primo")
16
+ model = AutoModelForCausalLM.from_pretrained("osiria/primo")
17
+ model = PeftModel.from_pretrained(model, "osiria/primo")
18
+
19
+ class Prime:
20
+
21
+ def __init__(self, tokenizer, model):
22
+ self.tokenizer = tokenizer
23
+ self.model = model
24
+
25
+ def _check_sublist(self, lst, sub_lst, sep = " "):
26
+
27
+ l_type = type(lst[0])
28
+ lst = sep.join(list(map(str, lst)))
29
+ sub_lst = sep.join(list(map(str, sub_lst)))
30
+
31
+ return sub_lst in lst
32
+
33
+ def _exclude_sublist(self, lst, sub_lst, sep = " "):
34
+
35
+ l_type = type(lst[0])
36
+ lst = sep.join(list(map(str, lst)))
37
+ sub_lst = sep.join(list(map(str, sub_lst)))
38
+ lst = re.sub("\s+", " ", lst.replace(sub_lst, "")).strip().split(sep)
39
+ lst = list(map(l_type, lst))
40
+
41
+ return lst
42
+
43
+ def generate(self, prompt, message = "", sep = " [AI]", max_tokens = 100, excluded = [[40, 19]],
44
+ lookback = 5, resample_tokens = [27793], replace_tokens = {11302: 23318},
45
+ stop_tokens = [239],
46
+ sample = False,
47
+ top_k = 5):
48
+
49
+ print("[HUMAN] " + prompt + sep)
50
+ print(message, max_tokens, sample, top_k)
51
+ if message:
52
+ prompt = message + ". " + prompt
53
+ prompt = prompt.replace("β€œ", '"').replace("”", '"').replace("’", "'")
54
+ if not sample:
55
+ top_k = 2
56
+ tokens = tokenizer.encode("[HUMAN] " + prompt + sep)
57
+ tokens_generated = []
58
+ checkpoint = 0
59
+ while tokens[-1] not in stop_tokens and len(tokens_generated) < max_tokens:
60
+ output = model.forward(input_ids=torch.tensor([tokens]).to(device)).logits[0,-1]
61
+ output = torch.softmax(output, dim = 0)
62
+ candidates = torch.topk(output, k = top_k)
63
+ if sample:
64
+ indices = candidates.indices
65
+ scores = candidates.values
66
+ next_token = indices[torch.multinomial(scores, 1)[0].item()]
67
+ else:
68
+ next_token = candidates.indices[0]
69
+ next_token = next_token.item()
70
+ sub_tokens = tokens_generated[-lookback:] + [next_token]
71
+ if next_token in resample_tokens:
72
+ next_token = candidates.indices[1]
73
+ next_token = next_token.item()
74
+ if len(tokens_generated) >= (lookback + 1) and next_token in tokens_generated[-2:]:
75
+ next_token = candidates.indices[1]
76
+ next_token = next_token.item()
77
+ elif len(tokens_generated) >= lookback and self._check_sublist(tokens_generated, sub_tokens):
78
+ if checkpoint:
79
+ tokens = tokens[:checkpoint]
80
+ break
81
+ else:
82
+ next_token = candidates.indices[1]
83
+ next_token = next_token.item()
84
+ sample = True
85
+ if next_token in replace_tokens:
86
+ next_token = replace_tokens[next_token]
87
+ tokens = tokens + [next_token]
88
+ tokens_generated = tokens_generated + [next_token]
89
+ if next_token == 5:
90
+ checkpoint = len(tokens)
91
+ for ex_lst in excluded:
92
+ tokens = self._exclude_sublist(tokens, ex_lst)
93
+ output = tokenizer.decode(tokens, skip_special_tokens=True)
94
+ output = output.split(sep)[-1].strip()
95
+ output = output[0].upper() + output[1:]
96
+ if output[-1] == tokenizer.decode(stop_tokens[0]):
97
+ output = output[:-1]
98
+ output = re.sub(" \d\.", "\nβ€’", output)
99
+ return output
100
+
101
+ model.eval()
102
+ device = torch.device("cuda")
103
+ prime = Prime(tokenizer = tokenizer, model = model)
104
+
105
+ def process_input(user_input, max_tokens, sample, top_k, message):
106
+ return prime.generate(prompt = user_input, message = message,
107
+ max_tokens = 150, sample = sample,
108
+ top_k = top_k)
109
+
110
+
111
+ header = '''--------------------------------------------------------------------------------------------------
112
+ <style>
113
+ .vertical-text {
114
+ writing-mode: vertical-lr;
115
+ text-orientation: upright;
116
+ background-color:red;
117
+ }
118
+ </style>
119
+ <center>
120
+ <body>
121
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
122
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
123
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">     </span>
124
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">     </span>
125
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
126
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
127
+ </body>
128
+ </center>
129
+ <br>
130
+ <center><img src="file/primo.png" width="100"></center>
131
+ '''
132
+
133
+ import gradio as gr
134
+ import random
135
+ import time
136
+
137
+ with gr.Blocks(title="primo", css="footer {visibility: hidden}", theme=gr.themes.Default(text_size="md", spacing_size="md")) as interface:
138
+ gr.Markdown(header)
139
+ with gr.Row():
140
+ with gr.Column(scale=1):
141
+ gr.Markdown("<b>opzioni</b>")
142
+ max_tokens = gr.Slider(1, 250, value=150, label="massimo numero di token", info="scegli un limite tra 1 e 250")
143
+ sample = gr.Checkbox(label="campionamento")
144
+ top_k = gr.Slider(1, 5, value=1, label="creativitΓ ", info="scegli un livello tra 1 e 5")
145
+ message = gr.Textbox(label="messaggio di sistema", value = "")
146
+ clear = gr.Button("pulisci conversazione")
147
+ with gr.Column(scale=8):
148
+ chatbot = gr.Chatbot(label = "prime").style(height=600)
149
+ msg = gr.Textbox(label = "richiesta")
150
+
151
+ def user(user_message, history):
152
+ return gr.update(value="", interactive=False), history + [[user_message, None]]
153
+
154
+ def bot(history, message, max_tokens, sample, top_k):
155
+ bot_message = process_input(history[-1][0], message = message, max_tokens = max_tokens,
156
+ sample = sample, top_k = top_k)
157
+ history[-1][1] = ""
158
+ for character in bot_message:
159
+ history[-1][1] += character
160
+ time.sleep(0.05)
161
+ yield history
162
+
163
+ response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
164
+ bot, [chatbot, message, max_tokens, sample, top_k], chatbot
165
+ )
166
+ response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
167
+ clear.click(lambda: None, None, chatbot, queue=False)
168
+ with gr.Column(scale=1):
169
+ gr.Markdown("<b>attenzione</b>")
170
+ gr.Markdown("il modello potrebbe comportarsi in maniera imprevista nel caso in cui riceva prompt troppo lontani dal suo pre-training o fine-tuning e, per via della natura probabilistica del meccanismo di generazione, potrebbe occasionalmente produrre contenuti distorti o offensivi in relazione a tematiche come il genere, le etnie, le ideologie, e le convinzioni politiche o religiose<br><br>per via di queste limitazioni, il modello e i suoi output dovrebbero essere usati con cautela, e non dovrebbero essere coinvolti in contesti che richiedono che il testo generato sia corretto o veritiero")
171
+
172
+ interface.queue()
173
+ interface.launch()