File size: 13,653 Bytes
181f327
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3bf6f689d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3bf6f68a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3bf6f68af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3bf6f68b80>", "_build": "<function ActorCriticPolicy._build at 0x7b3bf6f68c10>", "forward": "<function ActorCriticPolicy.forward at 0x7b3bf6f68ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3bf6f68d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3bf6f68dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3bf6f68e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3bf6f68ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3bf6f68f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3bf6f69000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3bf6f78280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2523136, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690189878628635154, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZlnLxIjJY/EsOnvUczCL820Ti95RasPAAAAAAAAAAA5pAtvR8KmD/QA1u+cLkavwmjnr19hM69AAAAAAAAAABaF4Q+0X8bvXEghTtc1DK6c+yIvrF+sLoAAIA/AACAP2Yp0bykr3a7r2KnvcXTnzww+8s8wS6IvQAAgD8AAIA/XbGXPhxcJT9udRo+RYYKv9070D5qZIa9AAAAAAAAAADa3489PVxdPi4nVr3OMJe+QFQGPdwOGr0AAAAAAAAAAKa01D0S7xU+k0lRvkzDqb6xdVy8YDpLvQAAAAAAAAAAAIamvF7CsD8+xZK9ZCcKv8blfr0Iu1o9AAAAAAAAAAAlh4i+wfkmP6oSfD5qgce+ZgoovT4QBD4AAAAAAAAAACBsSb7GzSI/0V28PUt26L75wLK9mOujPQAAAAAAAAAAejiBvtxRdT/Ko+69aUvlvmmQVL5nRDc8AAAAAAAAAABgMQq+1897P4JUSL6pBwK/+7IJvjoNVL0AAAAAAAAAABopkr3fOcI8s8a+vZB9L77GGJ69Ov1bvQAAAAAAAAAAZgBsvdVotD8f6TS+nRrbvpS4170GFCq9AAAAAAAAAABm2909OMj6u9GcNr48Fso8OGpSPYzOpb0AAIA/AACAP2blD73DjQo9oGpaPj8BWr50KuU9bVmaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF2QgLZzxSMAWyUS9yMAXSUR0CjM36iKziTdX2UKGgGR0BxNImF8G9paAdL7mgIR0CjM6P0RODbdX2UKGgGR0Bx/M0HhS9/aAdL6mgIR0CjM7uVPepGdX2UKGgGR0BwPHJPqLTAaAdL5mgIR0CjNFgdXDFZdX2UKGgGR0BwuLdLxqfwaAdL0GgIR0CjNJkKE385dX2UKGgGR0BwUVN8E3bVaAdL8mgIR0CjNKGaH9FXdX2UKGgGR0BwS6uX/o7naAdL12gIR0CjNMrfDUExdX2UKGgGR0BxH6s90RvnaAdL4WgIR0CjNQuv+wTudX2UKGgGR0BzXOloDgZTaAdLzWgIR0CjNTtl7MPjdX2UKGgGR0BwZszLwF1TaAdL4WgIR0CjNTu9nK4hdX2UKGgGR0BwZdxJd0JXaAdNAQFoCEdAozWukFfReHV9lChoBkdAc5lKL876pGgHTQsBaAhHQKM16y0KJEZ1fZQoaAZHQHFe8XvYvnNoB0vfaAhHQKM2BicXm/51fZQoaAZHQHMYgdS2phpoB00AAWgIR0CjNhVvMr3CdX2UKGgGR0By5I2S+xnnaAdNTAFoCEdAozaF1U2kz3V9lChoBkdAc3S+IuXeFmgHTQ8BaAhHQKM2pd30PH11fZQoaAZHQHLb1hXr+o9oB0v3aAhHQKM20q+ajN91fZQoaAZHQHFEw3YL9dhoB0v3aAhHQKM2+L7XQMR1fZQoaAZHQHGgiKekHlhoB0v9aAhHQKM2/FNL1291fZQoaAZHQG5Ivnr6ciJoB0vdaAhHQKM3CjdHlOp1fZQoaAZHQHJUlCPZIxxoB0vRaAhHQKM3GQKa5PN1fZQoaAZHQHF+UDlo11poB0vWaAhHQKM3LczqKP51fZQoaAZHQHI6g6ltTDRoB0vaaAhHQKM3Vyf+S8t1fZQoaAZHQHGO0CaJAMVoB0vOaAhHQKM3mFDfFaV1fZQoaAZHQHG06rmyPdVoB0vgaAhHQKM3yS1Vo6F1fZQoaAZHQHLLfW+XZ5BoB0v7aAhHQKM36Lronrp1fZQoaAZHQGzPxekYXO5oB0vpaAhHQKM4T/0dzXB1fZQoaAZHQG8ljGkvboNoB0vdaAhHQKM4mJa7mMh1fZQoaAZHQG+CC/fwZwZoB0v5aAhHQKM40GB4D9x1fZQoaAZHQHMQLZ39rGloB0v8aAhHQKM499tuUEB1fZQoaAZHQHFo+umrKeVoB0vQaAhHQKM5EtyPuG91fZQoaAZHQHFX1dcB2fVoB0vpaAhHQKM5RKoQ4CJ1fZQoaAZHQHD6yM98qnZoB0vnaAhHQKM5jzOoo/l1fZQoaAZHQG3P5XU6PsBoB0vhaAhHQKM5qFAVwgl1fZQoaAZHQG8QXxe9i+doB0vjaAhHQKM5sy5Zr591fZQoaAZHQHFA5xJd0JZoB0vhaAhHQKM5zpbD/ER1fZQoaAZHQHD/ClnAZbZoB0vzaAhHQKM58dGy5Zt1fZQoaAZHQHB/Fp48loloB0voaAhHQKM5+NXHR1J1fZQoaAZHQHNMRyn1nNBoB0u/aAhHQKM6KU9IPLB1fZQoaAZHQHO/+by6MBJoB0vdaAhHQKM6SOR1X/51fZQoaAZHQHCXkJ4SpR5oB0viaAhHQKM6ujMV1wJ1fZQoaAZHQHBxhePaL4xoB0vvaAhHQKM7W0+C9RJ1fZQoaAZHQG/C/M4cWCVoB0viaAhHQKM7dpljEvV1fZQoaAZHQHGzYGyHEdhoB0voaAhHQKM7wHxBmf51fZQoaAZHQGwwtyPuG9JoB0vnaAhHQKM74/HHWBl1fZQoaAZHQHGZrXxvvSdoB0v9aAhHQKM8URe1KGt1fZQoaAZHQHD0L4nF5v9oB00AAWgIR0CjPOeNkvsadX2UKGgGR0Buv0+1SflIaAdL42gIR0CjPPCPQv6CdX2UKGgGR0BxbwdgfEGaaAdL82gIR0CjPQAg5imVdX2UKGgGR0Bx4Cbb1yvLaAdNAgFoCEdAoz1tMTN+s3V9lChoBkdAcfKx0uDjBGgHTSgBaAhHQKM9mpRXOnl1fZQoaAZHQHFm3QhOgxtoB00qAWgIR0CjPa9R77bddX2UKGgGR0Bxqg6GQCCBaAdNBwFoCEdAoz3QmkWRBHV9lChoBkdAcU3dCVrylWgHS/toCEdAoz5V+y7f53V9lChoBkdAcxf+KCQLeGgHTSEBaAhHQKM+Ydtl7MR1fZQoaAZHQHFC0fxMFlloB0vQaAhHQKM+zymQ8wJ1fZQoaAZHQHFlfv8ZUDNoB0vtaAhHQKM+0FX7tRh1fZQoaAZHQG1+kjHGS6loB025AWgIR0CjP0/qoqCpdX2UKGgGR0BxjY8eS0SiaAdNEAFoCEdAoz9rHIZIhHV9lChoBkdAcomK1XvH92gHS/VoCEdAoz94Z/CqInV9lChoBkdActBAXl8w6GgHS9loCEdAoz+AQQL/j3V9lChoBkdAcdYs6JZW72gHS+5oCEdAo0BHkmx+rnV9lChoBkdAcaPBDXvphWgHS/BoCEdAo0BmQhfShXV9lChoBkdAcPn1aW5Yo2gHTQMBaAhHQKNAnxRVIZt1fZQoaAZHQHFnaUFB6a9oB0vmaAhHQKNArvhqCYl1fZQoaAZHQG6YpjlPrOZoB0vtaAhHQKNBBEETxoZ1fZQoaAZHQHDFQfQrtmdoB0vwaAhHQKNBKRxLkCF1fZQoaAZHQHAEXZsbedloB0vlaAhHQKNBgGQCCBh1fZQoaAZHQHDA1baAWi1oB0vhaAhHQKNBfc45tFd1fZQoaAZHQHFBtYSxqwhoB0vfaAhHQKNB7NA1Nxl1fZQoaAZHQG8PEpqh11ZoB0vuaAhHQKNCKEpy6tl1fZQoaAZHQHA9rJ4jbBZoB0v0aAhHQKNCxnDiwSt1fZQoaAZHQHKgG1pj+aVoB0vuaAhHQKNCzhKDkEN1fZQoaAZHQHEKIQrc0tRoB0v3aAhHQKNDE50bLlp1fZQoaAZHQHK7AKOT7l9oB0v9aAhHQKNDIEcsDnx1fZQoaAZHQHDB52pyZKFoB0vlaAhHQKNDxA+IM0B1fZQoaAZHQHCbVKTSssBoB0vhaAhHQKND08HObAl1fZQoaAZHQHGbRNmDlHVoB0v2aAhHQKNEYwjdHlR1fZQoaAZHQHEo6G+K0lZoB0vnaAhHQKNEwXDWK/F1fZQoaAZHQHBQsenyd4FoB0vWaAhHQKNE4/bCaZx1fZQoaAZHQHHYgqEvkBFoB00aAWgIR0CjRRCrT6SDdX2UKGgGR0BxNuD3/PxAaAdL4mgIR0CjRRYHPeHjdX2UKGgGR0BycVAOavzOaAdLz2gIR0CjRTy2H+IedX2UKGgGR0BeJw2MsH0LaAdN6ANoCEdAo0VNZA6dUnV9lChoBkdAcmKzOHFglWgHTTcBaAhHQKNF1S5RTCN1fZQoaAZHQHIk+jynUDxoB0vyaAhHQKNGmgwGnoB1fZQoaAZHQG1ZZMcp9Z1oB0vkaAhHQKNGqwCbMHN1fZQoaAZHQHGCLqY7aIxoB00pAWgIR0CjRtF+EytWdX2UKGgGR0BxpP7BO58SaAdNAAFoCEdAo0bZrULDynV9lChoBkdAcB8yWRigCmgHS9VoCEdAo0ccpkPMCHV9lChoBkdAbi2HY6GQCGgHTQgBaAhHQKNHO/TLGJh1fZQoaAZHQHGVgMpgCwNoB0v/aAhHQKNHpNwiqyZ1fZQoaAZHQHEpsqFyq+9oB0vkaAhHQKNH0x/ustF1fZQoaAZHQHEFspkPMB9oB0vfaAhHQKNILGff4yp1fZQoaAZHQHEwXFtKqXFoB0vUaAhHQKNIUNKh+OR1fZQoaAZHQG/wmGdqcmVoB0vlaAhHQKNIaCgbp/x1fZQoaAZHQHF8mrOqvNhoB0vmaAhHQKNItKL876p1fZQoaAZHQG6pvppvgm9oB0v5aAhHQKNIzyMkyDZ1fZQoaAZHQHDYAKOT7l9oB00OAWgIR0CjSNjv3JxOdX2UKGgGR0BxVKqlxffGaAdL1WgIR0CjSQ/DLr5ZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}