ostoveland
commited on
Commit
•
7da27d4
1
Parent(s):
3686d3a
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +497 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: NbAiLab/nb-sbert-base
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy
|
8 |
+
- dot_accuracy
|
9 |
+
- manhattan_accuracy
|
10 |
+
- euclidean_accuracy
|
11 |
+
- max_accuracy
|
12 |
+
pipeline_tag: sentence-similarity
|
13 |
+
tags:
|
14 |
+
- sentence-transformers
|
15 |
+
- sentence-similarity
|
16 |
+
- feature-extraction
|
17 |
+
- generated_from_trainer
|
18 |
+
- dataset_size:96724
|
19 |
+
- loss:TripletLoss
|
20 |
+
- loss:MultipleNegativesRankingLoss
|
21 |
+
- loss:CoSENTLoss
|
22 |
+
widget:
|
23 |
+
- source_sentence: Fjerne 60 cm snø fra enebolig på 100 kvadratmeter
|
24 |
+
sentences:
|
25 |
+
- 'query: montere solskjerming inne'
|
26 |
+
- 'query: 150 meter grøfting'
|
27 |
+
- 'query: Snømåking på enebolig, 100 kvadratmeter'
|
28 |
+
- source_sentence: Renovering av bad
|
29 |
+
sentences:
|
30 |
+
- Asfaltere innkjørsel
|
31 |
+
- Nye garasjeporter m/åpner
|
32 |
+
- Totalrenovering av lite bad i Lillestrøm
|
33 |
+
- source_sentence: Lite tilbygg til eksisterende bolig
|
34 |
+
sentences:
|
35 |
+
- Renovere bolig
|
36 |
+
- Vi skal pusse opp kjøkken
|
37 |
+
- Bygge tilbygg
|
38 |
+
- source_sentence: Gulvlegging 6 kvm gang
|
39 |
+
sentences:
|
40 |
+
- Installere gulvvarme
|
41 |
+
- Montering av 8 spotlights brannsikre (4stk. på kjøket) og (2 stk i gangen)
|
42 |
+
- Legge parkett i gang
|
43 |
+
- source_sentence: Fullføre utvendig forefallent arbeid
|
44 |
+
sentences:
|
45 |
+
- Bytte av vinduer i hus
|
46 |
+
- elektriker på bolig på 120kvm
|
47 |
+
- Renovere bad
|
48 |
+
model-index:
|
49 |
+
- name: SentenceTransformer based on NbAiLab/nb-sbert-base
|
50 |
+
results:
|
51 |
+
- task:
|
52 |
+
type: triplet
|
53 |
+
name: Triplet
|
54 |
+
dataset:
|
55 |
+
name: test triplet evaluation
|
56 |
+
type: test-triplet-evaluation
|
57 |
+
metrics:
|
58 |
+
- type: cosine_accuracy
|
59 |
+
value: 0.9859055673009162
|
60 |
+
name: Cosine Accuracy
|
61 |
+
- type: dot_accuracy
|
62 |
+
value: 0.016913319238900635
|
63 |
+
name: Dot Accuracy
|
64 |
+
- type: manhattan_accuracy
|
65 |
+
value: 0.9844961240310077
|
66 |
+
name: Manhattan Accuracy
|
67 |
+
- type: euclidean_accuracy
|
68 |
+
value: 0.9837914023960536
|
69 |
+
name: Euclidean Accuracy
|
70 |
+
- type: max_accuracy
|
71 |
+
value: 0.9859055673009162
|
72 |
+
name: Max Accuracy
|
73 |
+
---
|
74 |
+
|
75 |
+
# SentenceTransformer based on NbAiLab/nb-sbert-base
|
76 |
+
|
77 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
78 |
+
|
79 |
+
## Model Details
|
80 |
+
|
81 |
+
### Model Description
|
82 |
+
- **Model Type:** Sentence Transformer
|
83 |
+
- **Base model:** [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) <!-- at revision 56ae460305b0787432b6498e5adc17447e66fe66 -->
|
84 |
+
- **Maximum Sequence Length:** 75 tokens
|
85 |
+
- **Output Dimensionality:** 768 tokens
|
86 |
+
- **Similarity Function:** Cosine Similarity
|
87 |
+
<!-- - **Training Dataset:** Unknown -->
|
88 |
+
<!-- - **Language:** Unknown -->
|
89 |
+
<!-- - **License:** Unknown -->
|
90 |
+
|
91 |
+
### Model Sources
|
92 |
+
|
93 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
94 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
95 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
96 |
+
|
97 |
+
### Full Model Architecture
|
98 |
+
|
99 |
+
```
|
100 |
+
SentenceTransformer(
|
101 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
|
102 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
103 |
+
)
|
104 |
+
```
|
105 |
+
|
106 |
+
## Usage
|
107 |
+
|
108 |
+
### Direct Usage (Sentence Transformers)
|
109 |
+
|
110 |
+
First install the Sentence Transformers library:
|
111 |
+
|
112 |
+
```bash
|
113 |
+
pip install -U sentence-transformers
|
114 |
+
```
|
115 |
+
|
116 |
+
Then you can load this model and run inference.
|
117 |
+
```python
|
118 |
+
from sentence_transformers import SentenceTransformer
|
119 |
+
|
120 |
+
# Download from the 🤗 Hub
|
121 |
+
model = SentenceTransformer("ostoveland/SBertBaseMittanbudver1")
|
122 |
+
# Run inference
|
123 |
+
sentences = [
|
124 |
+
'Fullføre utvendig forefallent arbeid',
|
125 |
+
'elektriker på bolig på 120kvm',
|
126 |
+
'Renovere bad',
|
127 |
+
]
|
128 |
+
embeddings = model.encode(sentences)
|
129 |
+
print(embeddings.shape)
|
130 |
+
# [3, 768]
|
131 |
+
|
132 |
+
# Get the similarity scores for the embeddings
|
133 |
+
similarities = model.similarity(embeddings, embeddings)
|
134 |
+
print(similarities.shape)
|
135 |
+
# [3, 3]
|
136 |
+
```
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Direct Usage (Transformers)
|
140 |
+
|
141 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
142 |
+
|
143 |
+
</details>
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
### Downstream Usage (Sentence Transformers)
|
148 |
+
|
149 |
+
You can finetune this model on your own dataset.
|
150 |
+
|
151 |
+
<details><summary>Click to expand</summary>
|
152 |
+
|
153 |
+
</details>
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Out-of-Scope Use
|
158 |
+
|
159 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
160 |
+
-->
|
161 |
+
|
162 |
+
## Evaluation
|
163 |
+
|
164 |
+
### Metrics
|
165 |
+
|
166 |
+
#### Triplet
|
167 |
+
* Dataset: `test-triplet-evaluation`
|
168 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
169 |
+
|
170 |
+
| Metric | Value |
|
171 |
+
|:-------------------|:-----------|
|
172 |
+
| cosine_accuracy | 0.9859 |
|
173 |
+
| dot_accuracy | 0.0169 |
|
174 |
+
| manhattan_accuracy | 0.9845 |
|
175 |
+
| euclidean_accuracy | 0.9838 |
|
176 |
+
| **max_accuracy** | **0.9859** |
|
177 |
+
|
178 |
+
<!--
|
179 |
+
## Bias, Risks and Limitations
|
180 |
+
|
181 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
182 |
+
-->
|
183 |
+
|
184 |
+
<!--
|
185 |
+
### Recommendations
|
186 |
+
|
187 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
188 |
+
-->
|
189 |
+
|
190 |
+
## Training Details
|
191 |
+
|
192 |
+
### Training Datasets
|
193 |
+
|
194 |
+
#### Unnamed Dataset
|
195 |
+
|
196 |
+
|
197 |
+
* Size: 55,426 training samples
|
198 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
199 |
+
* Approximate statistics based on the first 1000 samples:
|
200 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
201 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
202 |
+
| type | string | string | string |
|
203 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.92 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.49 tokens</li><li>max: 35 tokens</li></ul> |
|
204 |
+
* Samples:
|
205 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
206 |
+
|:----------------------------------------|:------------------------------------------|:-----------------------------------------------------------------|
|
207 |
+
| <code>Bygge støttemur</code> | <code>Støttemur</code> | <code>Bytte lås på dörr</code> |
|
208 |
+
| <code>Understell bord i stål</code> | <code>Lage stålunderstell til bord</code> | <code>Bygge trebord</code> |
|
209 |
+
| <code>Reparasjon vannbåren varme</code> | <code>Vannbåren varme til enebolig</code> | <code>* Fortsatt ledig: ombygning av eksisterende kjeller</code> |
|
210 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
211 |
+
```json
|
212 |
+
{
|
213 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
214 |
+
"triplet_margin": 5
|
215 |
+
}
|
216 |
+
```
|
217 |
+
|
218 |
+
#### Unnamed Dataset
|
219 |
+
|
220 |
+
|
221 |
+
* Size: 22,563 training samples
|
222 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
223 |
+
* Approximate statistics based on the first 1000 samples:
|
224 |
+
| | sentence_0 | sentence_1 |
|
225 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
226 |
+
| type | string | string |
|
227 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 11.09 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.94 tokens</li><li>max: 30 tokens</li></ul> |
|
228 |
+
* Samples:
|
229 |
+
| sentence_0 | sentence_1 |
|
230 |
+
|:-------------------------------------------------------------------------------------------|:----------------------------------------|
|
231 |
+
| <code>utforing av gavlvegg</code> | <code>query: utforing av vegg</code> |
|
232 |
+
| <code>Montere kjøkken</code> | <code>query: kjøkkenmontering</code> |
|
233 |
+
| <code>Sette opp lettvegg med skyvedør, bygge bod i carport, forlenge tak på carport</code> | <code>query: bygge bod i carport</code> |
|
234 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
235 |
+
```json
|
236 |
+
{
|
237 |
+
"scale": 20.0,
|
238 |
+
"similarity_fct": "cos_sim"
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
#### Unnamed Dataset
|
243 |
+
|
244 |
+
|
245 |
+
* Size: 18,735 training samples
|
246 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
247 |
+
* Approximate statistics based on the first 1000 samples:
|
248 |
+
| | sentence_0 | sentence_1 | label |
|
249 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
250 |
+
| type | string | string | float |
|
251 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 13.08 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.52 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.51</li><li>max: 0.95</li></ul> |
|
252 |
+
* Samples:
|
253 |
+
| sentence_0 | sentence_1 | label |
|
254 |
+
|:---------------------------------------------------------|:-------------------------------------------|:------------------|
|
255 |
+
| <code>Renovering av hus - plantegninger og fasade</code> | <code>elektriker på bolig på 120kvm</code> | <code>0.15</code> |
|
256 |
+
| <code>Blending av innvendig dør</code> | <code>Tette igjen døråpning</code> | <code>0.75</code> |
|
257 |
+
| <code>Fortsatt ledig: Kappe teglstein på pipeløp</code> | <code>Murearbeid</code> | <code>0.45</code> |
|
258 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
259 |
+
```json
|
260 |
+
{
|
261 |
+
"scale": 20.0,
|
262 |
+
"similarity_fct": "pairwise_cos_sim"
|
263 |
+
}
|
264 |
+
```
|
265 |
+
|
266 |
+
### Training Hyperparameters
|
267 |
+
#### Non-Default Hyperparameters
|
268 |
+
|
269 |
+
- `per_device_train_batch_size`: 32
|
270 |
+
- `per_device_eval_batch_size`: 32
|
271 |
+
- `num_train_epochs`: 6
|
272 |
+
- `multi_dataset_batch_sampler`: round_robin
|
273 |
+
|
274 |
+
#### All Hyperparameters
|
275 |
+
<details><summary>Click to expand</summary>
|
276 |
+
|
277 |
+
- `overwrite_output_dir`: False
|
278 |
+
- `do_predict`: False
|
279 |
+
- `eval_strategy`: no
|
280 |
+
- `prediction_loss_only`: True
|
281 |
+
- `per_device_train_batch_size`: 32
|
282 |
+
- `per_device_eval_batch_size`: 32
|
283 |
+
- `per_gpu_train_batch_size`: None
|
284 |
+
- `per_gpu_eval_batch_size`: None
|
285 |
+
- `gradient_accumulation_steps`: 1
|
286 |
+
- `eval_accumulation_steps`: None
|
287 |
+
- `learning_rate`: 5e-05
|
288 |
+
- `weight_decay`: 0.0
|
289 |
+
- `adam_beta1`: 0.9
|
290 |
+
- `adam_beta2`: 0.999
|
291 |
+
- `adam_epsilon`: 1e-08
|
292 |
+
- `max_grad_norm`: 1
|
293 |
+
- `num_train_epochs`: 6
|
294 |
+
- `max_steps`: -1
|
295 |
+
- `lr_scheduler_type`: linear
|
296 |
+
- `lr_scheduler_kwargs`: {}
|
297 |
+
- `warmup_ratio`: 0.0
|
298 |
+
- `warmup_steps`: 0
|
299 |
+
- `log_level`: passive
|
300 |
+
- `log_level_replica`: warning
|
301 |
+
- `log_on_each_node`: True
|
302 |
+
- `logging_nan_inf_filter`: True
|
303 |
+
- `save_safetensors`: True
|
304 |
+
- `save_on_each_node`: False
|
305 |
+
- `save_only_model`: False
|
306 |
+
- `restore_callback_states_from_checkpoint`: False
|
307 |
+
- `no_cuda`: False
|
308 |
+
- `use_cpu`: False
|
309 |
+
- `use_mps_device`: False
|
310 |
+
- `seed`: 42
|
311 |
+
- `data_seed`: None
|
312 |
+
- `jit_mode_eval`: False
|
313 |
+
- `use_ipex`: False
|
314 |
+
- `bf16`: False
|
315 |
+
- `fp16`: False
|
316 |
+
- `fp16_opt_level`: O1
|
317 |
+
- `half_precision_backend`: auto
|
318 |
+
- `bf16_full_eval`: False
|
319 |
+
- `fp16_full_eval`: False
|
320 |
+
- `tf32`: None
|
321 |
+
- `local_rank`: 0
|
322 |
+
- `ddp_backend`: None
|
323 |
+
- `tpu_num_cores`: None
|
324 |
+
- `tpu_metrics_debug`: False
|
325 |
+
- `debug`: []
|
326 |
+
- `dataloader_drop_last`: False
|
327 |
+
- `dataloader_num_workers`: 0
|
328 |
+
- `dataloader_prefetch_factor`: None
|
329 |
+
- `past_index`: -1
|
330 |
+
- `disable_tqdm`: False
|
331 |
+
- `remove_unused_columns`: True
|
332 |
+
- `label_names`: None
|
333 |
+
- `load_best_model_at_end`: False
|
334 |
+
- `ignore_data_skip`: False
|
335 |
+
- `fsdp`: []
|
336 |
+
- `fsdp_min_num_params`: 0
|
337 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
338 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
339 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
340 |
+
- `deepspeed`: None
|
341 |
+
- `label_smoothing_factor`: 0.0
|
342 |
+
- `optim`: adamw_torch
|
343 |
+
- `optim_args`: None
|
344 |
+
- `adafactor`: False
|
345 |
+
- `group_by_length`: False
|
346 |
+
- `length_column_name`: length
|
347 |
+
- `ddp_find_unused_parameters`: None
|
348 |
+
- `ddp_bucket_cap_mb`: None
|
349 |
+
- `ddp_broadcast_buffers`: False
|
350 |
+
- `dataloader_pin_memory`: True
|
351 |
+
- `dataloader_persistent_workers`: False
|
352 |
+
- `skip_memory_metrics`: True
|
353 |
+
- `use_legacy_prediction_loop`: False
|
354 |
+
- `push_to_hub`: False
|
355 |
+
- `resume_from_checkpoint`: None
|
356 |
+
- `hub_model_id`: None
|
357 |
+
- `hub_strategy`: every_save
|
358 |
+
- `hub_private_repo`: False
|
359 |
+
- `hub_always_push`: False
|
360 |
+
- `gradient_checkpointing`: False
|
361 |
+
- `gradient_checkpointing_kwargs`: None
|
362 |
+
- `include_inputs_for_metrics`: False
|
363 |
+
- `eval_do_concat_batches`: True
|
364 |
+
- `fp16_backend`: auto
|
365 |
+
- `push_to_hub_model_id`: None
|
366 |
+
- `push_to_hub_organization`: None
|
367 |
+
- `mp_parameters`:
|
368 |
+
- `auto_find_batch_size`: False
|
369 |
+
- `full_determinism`: False
|
370 |
+
- `torchdynamo`: None
|
371 |
+
- `ray_scope`: last
|
372 |
+
- `ddp_timeout`: 1800
|
373 |
+
- `torch_compile`: False
|
374 |
+
- `torch_compile_backend`: None
|
375 |
+
- `torch_compile_mode`: None
|
376 |
+
- `dispatch_batches`: None
|
377 |
+
- `split_batches`: None
|
378 |
+
- `include_tokens_per_second`: False
|
379 |
+
- `include_num_input_tokens_seen`: False
|
380 |
+
- `neftune_noise_alpha`: None
|
381 |
+
- `optim_target_modules`: None
|
382 |
+
- `batch_eval_metrics`: False
|
383 |
+
- `batch_sampler`: batch_sampler
|
384 |
+
- `multi_dataset_batch_sampler`: round_robin
|
385 |
+
|
386 |
+
</details>
|
387 |
+
|
388 |
+
### Training Logs
|
389 |
+
| Epoch | Step | Training Loss | test-triplet-evaluation_max_accuracy |
|
390 |
+
|:------:|:-----:|:-------------:|:------------------------------------:|
|
391 |
+
| 0.2844 | 500 | 3.6092 | - |
|
392 |
+
| 0.5688 | 1000 | 2.9852 | - |
|
393 |
+
| 0.8532 | 1500 | 2.7542 | - |
|
394 |
+
| 1.0011 | 1760 | - | 0.9831 |
|
395 |
+
| 1.1365 | 2000 | 2.5467 | - |
|
396 |
+
| 1.4209 | 2500 | 2.3263 | - |
|
397 |
+
| 1.7053 | 3000 | 2.2608 | - |
|
398 |
+
| 1.9898 | 3500 | 2.2042 | - |
|
399 |
+
| 2.0011 | 3520 | - | 0.9859 |
|
400 |
+
| 2.2730 | 4000 | 2.1615 | - |
|
401 |
+
| 2.5575 | 4500 | 2.0934 | - |
|
402 |
+
| 2.8419 | 5000 | 2.1226 | - |
|
403 |
+
| 3.0011 | 5280 | - | 0.9859 |
|
404 |
+
| 3.1251 | 5500 | 2.1977 | - |
|
405 |
+
| 3.4096 | 6000 | 2.1209 | - |
|
406 |
+
| 3.6940 | 6500 | 2.1006 | - |
|
407 |
+
| 3.9784 | 7000 | 2.1495 | - |
|
408 |
+
| 4.0011 | 7040 | - | 0.9859 |
|
409 |
+
| 4.2617 | 7500 | 2.1792 | - |
|
410 |
+
| 4.5461 | 8000 | 2.0958 | - |
|
411 |
+
| 4.8305 | 8500 | 2.1065 | - |
|
412 |
+
| 5.0011 | 8800 | - | 0.9859 |
|
413 |
+
| 5.1138 | 9000 | 2.1762 | - |
|
414 |
+
| 5.3982 | 9500 | 2.1347 | - |
|
415 |
+
| 5.6826 | 10000 | 2.1198 | - |
|
416 |
+
| 5.9670 | 10500 | 2.1251 | - |
|
417 |
+
| 5.9943 | 10548 | - | 0.9859 |
|
418 |
+
|
419 |
+
|
420 |
+
### Framework Versions
|
421 |
+
- Python: 3.10.12
|
422 |
+
- Sentence Transformers: 3.0.1
|
423 |
+
- Transformers: 4.41.2
|
424 |
+
- PyTorch: 2.3.0+cu121
|
425 |
+
- Accelerate: 0.31.0
|
426 |
+
- Datasets: 2.20.0
|
427 |
+
- Tokenizers: 0.19.1
|
428 |
+
|
429 |
+
## Citation
|
430 |
+
|
431 |
+
### BibTeX
|
432 |
+
|
433 |
+
#### Sentence Transformers
|
434 |
+
```bibtex
|
435 |
+
@inproceedings{reimers-2019-sentence-bert,
|
436 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
437 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
438 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
439 |
+
month = "11",
|
440 |
+
year = "2019",
|
441 |
+
publisher = "Association for Computational Linguistics",
|
442 |
+
url = "https://arxiv.org/abs/1908.10084",
|
443 |
+
}
|
444 |
+
```
|
445 |
+
|
446 |
+
#### TripletLoss
|
447 |
+
```bibtex
|
448 |
+
@misc{hermans2017defense,
|
449 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
450 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
451 |
+
year={2017},
|
452 |
+
eprint={1703.07737},
|
453 |
+
archivePrefix={arXiv},
|
454 |
+
primaryClass={cs.CV}
|
455 |
+
}
|
456 |
+
```
|
457 |
+
|
458 |
+
#### MultipleNegativesRankingLoss
|
459 |
+
```bibtex
|
460 |
+
@misc{henderson2017efficient,
|
461 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
462 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
463 |
+
year={2017},
|
464 |
+
eprint={1705.00652},
|
465 |
+
archivePrefix={arXiv},
|
466 |
+
primaryClass={cs.CL}
|
467 |
+
}
|
468 |
+
```
|
469 |
+
|
470 |
+
#### CoSENTLoss
|
471 |
+
```bibtex
|
472 |
+
@online{kexuefm-8847,
|
473 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
474 |
+
author={Su Jianlin},
|
475 |
+
year={2022},
|
476 |
+
month={Jan},
|
477 |
+
url={https://kexue.fm/archives/8847},
|
478 |
+
}
|
479 |
+
```
|
480 |
+
|
481 |
+
<!--
|
482 |
+
## Glossary
|
483 |
+
|
484 |
+
*Clearly define terms in order to be accessible across audiences.*
|
485 |
+
-->
|
486 |
+
|
487 |
+
<!--
|
488 |
+
## Model Card Authors
|
489 |
+
|
490 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
491 |
+
-->
|
492 |
+
|
493 |
+
<!--
|
494 |
+
## Model Card Contact
|
495 |
+
|
496 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
497 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NbAiLab/nb-sbert-base",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 119547
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6dcb7ea1adbe8fe668ce4846d4f85ecba37ad4789ad0750397d737d019fb162
|
3 |
+
size 711480934
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 75,
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|