|
norm_cfg = dict(type="SyncBN", requires_grad=True) |
|
|
|
data_preprocessor = dict( |
|
bgr_to_rgb=True, |
|
mean=[123.675, 116.28, 103.53], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=(512, 512), |
|
std=[58.395, 57.12, 57.375], |
|
type="SegDataPreProcessor", |
|
) |
|
|
|
test_pipeline = [ |
|
dict(type="LoadImageFromNDArray"), |
|
dict(type="Resize", scale=(512, 512), keep_ratio=True), |
|
dict(type="LoadAnnotations", reduce_zero_label=True), |
|
dict(type="PackSegInputs"), |
|
] |
|
|
|
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] |
|
tta_model = dict(type="SegTTAModel") |
|
tta_pipeline = [ |
|
dict(type="LoadImageFromNDArray", backend_args=None), |
|
dict( |
|
type="TestTimeAug", |
|
transforms=[ |
|
[dict(type="Resize", scale_factor=r, keep_ratio=True) for r in img_ratios], |
|
[ |
|
dict(type="RandomFlip", prob=0.0, direction="horizontal"), |
|
dict(type="RandomFlip", prob=1.0, direction="horizontal"), |
|
], |
|
[dict(type="LoadAnnotations")], |
|
[dict(type="PackSegInputs")], |
|
], |
|
), |
|
] |
|
|
|
model = dict( |
|
type="EncoderDecoder", |
|
data_preprocessor=data_preprocessor, |
|
pretrained="open-mmlab://resnet101_v1c", |
|
backbone=dict( |
|
type="ResNetV1c", |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
dilations=(1, 1, 2, 4), |
|
strides=(1, 2, 1, 1), |
|
norm_cfg=norm_cfg, |
|
norm_eval=False, |
|
style="pytorch", |
|
contract_dilation=True, |
|
), |
|
decode_head=dict( |
|
type="DepthwiseSeparableASPPHead", |
|
in_channels=2048, |
|
in_index=3, |
|
channels=512, |
|
dilations=(1, 12, 24, 36), |
|
c1_in_channels=256, |
|
c1_channels=48, |
|
dropout_ratio=0.1, |
|
num_classes=2, |
|
norm_cfg=norm_cfg, |
|
align_corners=False, |
|
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), |
|
sampler=dict(type="OHEMPixelSampler", thresh=0.7, min_kept=10000), |
|
), |
|
auxiliary_head=dict( |
|
type="FCNHead", |
|
in_channels=1024, |
|
in_index=2, |
|
channels=256, |
|
num_convs=1, |
|
concat_input=False, |
|
dropout_ratio=0.1, |
|
num_classes=2, |
|
norm_cfg=norm_cfg, |
|
align_corners=False, |
|
loss_decode=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=0.4), |
|
), |
|
train_cfg=dict(), |
|
test_cfg=dict(mode="whole"), |
|
) |
|
|