oualidlamrini commited on
Commit
e20f54f
1 Parent(s): f1d58be

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Doc-classification-model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Doc-classification-model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ccdv/lsg-xlm-roberta-base-4096",
3
+ "adaptive": true,
4
+ "architectures": [
5
+ "LSGXLMRobertaForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "modeling_lsg_xlm_roberta.LSGXLMRobertaConfig",
10
+ "AutoModel": "modeling_lsg_xlm_roberta.LSGXLMRobertaModel",
11
+ "AutoModelForCausalLM": "modeling_lsg_xlm_roberta.LSGXLMRobertaForCausalLM",
12
+ "AutoModelForMaskedLM": "modeling_lsg_xlm_roberta.LSGXLMRobertaForMaskedLM",
13
+ "AutoModelForMultipleChoice": "modeling_lsg_xlm_roberta.LSGXLMRobertaForMultipleChoice",
14
+ "AutoModelForQuestionAnswering": "modeling_lsg_xlm_roberta.LSGXLMRobertaForQuestionAnswering",
15
+ "AutoModelForSequenceClassification": "modeling_lsg_xlm_roberta.LSGXLMRobertaForSequenceClassification",
16
+ "AutoModelForTokenClassification": "modeling_lsg_xlm_roberta.LSGXLMRobertaForTokenClassification"
17
+ },
18
+ "base_model_prefix": "lsg",
19
+ "block_size": 256,
20
+ "bos_token_id": 0,
21
+ "classifier_dropout": null,
22
+ "eos_token_id": 2,
23
+ "hidden_act": "gelu",
24
+ "hidden_dropout_prob": 0.1,
25
+ "hidden_size": 768,
26
+ "id2label": {
27
+ "0": "PRETS IMMOBILIERS, CONSOMMATIONS ET DETTES (REPRIS ET CONSERVES)",
28
+ "1": "RELEVE DE COMPTE ET RIB",
29
+ "2": "AUTRES",
30
+ "3": "HABITATION",
31
+ "4": "REVENUS ET IMPOTS",
32
+ "5": "IDENTITE ET SITUATION PERSONNELLE"
33
+ },
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 3072,
36
+ "label2id": {
37
+ "AUTRES": 2,
38
+ "HABITATION": 3,
39
+ "IDENTITE ET SITUATION PERSONNELLE": 5,
40
+ "PRETS IMMOBILIERS, CONSOMMATIONS ET DETTES (REPRIS ET CONSERVES)": 0,
41
+ "RELEVE DE COMPTE ET RIB": 1,
42
+ "REVENUS ET IMPOTS": 4
43
+ },
44
+ "layer_norm_eps": 1e-05,
45
+ "lsh_num_pre_rounds": 1,
46
+ "mask_first_token": true,
47
+ "max_position_embeddings": 4098,
48
+ "model_type": "xlm-roberta",
49
+ "num_attention_heads": 12,
50
+ "num_global_tokens": 1,
51
+ "num_hidden_layers": 12,
52
+ "output_past": true,
53
+ "pad_token_id": 1,
54
+ "pool_with_global": true,
55
+ "position_embedding_type": "absolute",
56
+ "problem_type": "single_label_classification",
57
+ "sparse_block_size": 0,
58
+ "sparsity_factor": 4,
59
+ "sparsity_type": "none",
60
+ "torch_dtype": "float32",
61
+ "transformers_version": "4.40.2",
62
+ "type_vocab_size": 1,
63
+ "use_cache": true,
64
+ "vocab_size": 250002
65
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abaf3f3d2f0ba394c6e0b8f5605d5d49b6db5595e14a14aad9244bb0c68bc03
3
+ size 1124800360
modeling_lsg_xlm_roberta.py ADDED
@@ -0,0 +1,1207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import warn
2
+ from transformers.models.xlm_roberta.modeling_xlm_roberta import *
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
6
+ import sys
7
+
8
+ AUTO_MAP = {
9
+ "AutoModel": "modeling_lsg_xlm_roberta.LSGXLMRobertaModel",
10
+ "AutoModelForCausalLM": "modeling_lsg_xlm_roberta.LSGXLMRobertaForCausalLM",
11
+ "AutoModelForMaskedLM": "modeling_lsg_xlm_roberta.LSGXLMRobertaForMaskedLM",
12
+ "AutoModelForMultipleChoice": "modeling_lsg_xlm_roberta.LSGXLMRobertaForMultipleChoice",
13
+ "AutoModelForQuestionAnswering": "modeling_lsg_xlm_roberta.LSGXLMRobertaForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "modeling_lsg_xlm_roberta.LSGXLMRobertaForSequenceClassification",
15
+ "AutoModelForTokenClassification": "modeling_lsg_xlm_roberta.LSGXLMRobertaForTokenClassification"
16
+ }
17
+
18
+ class LSGXLMRobertaConfig(XLMRobertaConfig):
19
+ """
20
+ This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
21
+ documentation alongside usage examples.
22
+ """
23
+
24
+ base_model_prefix = "lsg"
25
+ model_type = "xlm-roberta"
26
+
27
+ def __init__(
28
+ self,
29
+ adaptive=True,
30
+ base_model_prefix="lsg",
31
+ block_size=128,
32
+ lsh_num_pre_rounds=1,
33
+ mask_first_token=False,
34
+ num_global_tokens=1,
35
+ pool_with_global=True,
36
+ sparse_block_size=128,
37
+ sparsity_factor=2,
38
+ sparsity_type="norm",
39
+ **kwargs
40
+ ):
41
+ """Constructs LSGXLMRobertaConfig."""
42
+ super().__init__(**kwargs)
43
+
44
+ self.adaptive = adaptive
45
+ self.auto_map = AUTO_MAP
46
+ self.base_model_prefix = base_model_prefix
47
+ self.block_size = block_size
48
+ self.lsh_num_pre_rounds = lsh_num_pre_rounds
49
+ self.mask_first_token = mask_first_token
50
+ self.num_global_tokens = num_global_tokens
51
+ self.pool_with_global = pool_with_global
52
+ self.sparse_block_size = sparse_block_size
53
+ self.sparsity_factor = sparsity_factor
54
+ self.sparsity_type = sparsity_type
55
+
56
+ if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride", "bos_pooling"]:
57
+ logger.warning(
58
+ "[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride', 'bos_pooling'], \
59
+ setting sparsity_type=None, computation will skip sparse attention")
60
+ self.sparsity_type = None
61
+
62
+ if self.sparsity_type in ["stride", "block_stride"]:
63
+ if self.sparsity_factor > self.num_attention_heads:
64
+ logger.warning(
65
+ "[WARNING CONFIG]: sparsity_factor > num_attention_heads is not recommended for stride/block_stride sparsity"
66
+ )
67
+
68
+ if self.num_global_tokens < 1:
69
+ logger.warning(
70
+ "[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
71
+ )
72
+ self.num_global_tokens = 1
73
+ elif self.num_global_tokens > 512:
74
+ logger.warning(
75
+ "[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512"
76
+ )
77
+ self.num_global_tokens = 512
78
+
79
+ if self.sparsity_factor > 0:
80
+ assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
81
+ assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
82
+
83
+ if self.mask_first_token and not pool_with_global:
84
+ logger.warning(
85
+ "[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.")
86
+ self.pool_with_global = True
87
+
88
+ if hasattr(self, "position_embedding_type"):
89
+ if self.position_embedding_type != "absolute":
90
+ logger.warning(
91
+ "[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.")
92
+
93
+
94
+ class BaseSelfAttention(nn.Module):
95
+
96
+ def init_modules(self, config):
97
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
98
+ config, "embedding_size"
99
+ ):
100
+ raise ValueError(
101
+ "The hidden size (%d) is not a multiple of the number of attention "
102
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
103
+ )
104
+
105
+ self.num_attention_heads = config.num_attention_heads
106
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
107
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
108
+
109
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
110
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
111
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
112
+
113
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
114
+
115
+ def transpose_for_scores(self, x):
116
+ new_x_shape = x.size()[:-1] + (
117
+ self.num_attention_heads,
118
+ self.attention_head_size,
119
+ )
120
+ x = x.view(*new_x_shape)
121
+ return x.permute(0, 2, 1, 3)
122
+
123
+ def reshape_output(self, context_layer):
124
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
125
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
126
+ return context_layer.view(*new_context_layer_shape)
127
+
128
+ def project_QKV(self, hidden_states):
129
+
130
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
131
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
132
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
133
+ return query_layer, key_layer, value_layer
134
+
135
+
136
+ class BaseAttentionProduct(nn.Module):
137
+
138
+ def __init__(self, config):
139
+ """
140
+ Compute attention: softmax(Q @ K.T) @ V
141
+ """
142
+ super().__init__()
143
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
144
+
145
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
146
+
147
+ d = query_layer.shape[-1]
148
+
149
+ # Take the dot product between "query" and "key" to get the raw attention scores.
150
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
151
+
152
+ del query_layer
153
+ del key_layer
154
+
155
+ if attention_mask is not None:
156
+ # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
157
+ attention_scores = attention_scores + attention_mask
158
+ del attention_mask
159
+
160
+ # Normalize the attention scores to probabilities.
161
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
162
+
163
+ # This is actually dropping out entire tokens to attend to, which might
164
+ # seem a bit unusual, but is taken from the original Transformer paper.
165
+ context_layer = self.dropout(attention_probs) @ value_layer
166
+
167
+ return context_layer
168
+
169
+
170
+ class CausalAttentionProduct(nn.Module):
171
+
172
+ def __init__(self, config):
173
+ """
174
+ Compute attention: softmax(Q @ K.T) @ V
175
+ """
176
+ super().__init__()
177
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
178
+ self.block_size = config.block_size
179
+
180
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None, causal_shape=None):
181
+
182
+ d = query_layer.shape[-1]
183
+
184
+ # Take the dot product between "query" and "key" to get the raw attention scores.
185
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
186
+
187
+ del query_layer
188
+ del key_layer
189
+
190
+ if attention_mask is not None:
191
+ # Add causal mask
192
+ causal_shape = (self.block_size, self.block_size) if causal_shape is None else causal_shape
193
+ causal_mask = torch.tril(
194
+ torch.ones(*causal_shape, device=attention_mask.device, dtype=attention_scores.dtype),
195
+ diagonal=-1
196
+ )
197
+
198
+ # Min value
199
+ dtype_min = torch.tensor(
200
+ torch.finfo(attention_scores.dtype).min, device=attention_scores.device, dtype=attention_scores.dtype
201
+ )
202
+
203
+ # Build causal + attention_mask
204
+ causal_mask = torch.nn.functional.pad(causal_mask.T * dtype_min, (attention_mask.size()[-1] - self.block_size, 0), value=0)
205
+ attention_mask = torch.max(attention_mask + causal_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0), dtype_min)
206
+
207
+ attention_scores = attention_scores + attention_mask
208
+ del attention_mask
209
+ del causal_mask
210
+
211
+ # Normalize the attention scores to probabilities.
212
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
213
+
214
+ # This is actually dropping out entire tokens to attend to, which might
215
+ # seem a bit unusual, but is taken from the original Transformer paper.
216
+ context_layer = self.dropout(attention_probs) @ value_layer
217
+
218
+ return context_layer
219
+
220
+
221
+ class LSGAttentionProduct(nn.Module):
222
+
223
+ def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4, is_causal=False):
224
+ """
225
+ Compute block or overlapping blocks attention products
226
+ """
227
+ super().__init__()
228
+
229
+ self.block_size = block_size
230
+ self.sparse_block_size = sparse_block_size
231
+ self.sparsity_factor = sparsity_factor
232
+ self.is_causal = is_causal
233
+
234
+ if self.block_size is None:
235
+ self.block_size = config.block_size
236
+
237
+ if self.sparse_block_size is None:
238
+ self.sparse_block_size = config.sparse_block_size
239
+
240
+ # Shape of blocks
241
+ self.local_shapes = (self.block_size*3, self.block_size)
242
+ if self.sparse_block_size and self.sparsity_factor > 0:
243
+ self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
244
+
245
+ if is_causal:
246
+ self.attention = CausalAttentionProduct(config)
247
+ else:
248
+ self.attention = BaseAttentionProduct(config)
249
+
250
+ def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
251
+
252
+ # Build local tokens
253
+ local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
254
+ del hidden_states
255
+
256
+ # Build sparse tokens
257
+ if sparse_hidden_states is not None:
258
+ sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
259
+
260
+ return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
261
+
262
+ def forward(
263
+ self,
264
+ query_layer,
265
+ key_layer,
266
+ value_layer,
267
+ attention_mask=None,
268
+ sparse_key=None,
269
+ sparse_value=None,
270
+ sparse_mask=None,
271
+ global_key=None,
272
+ global_value=None,
273
+ global_mask=None
274
+ ):
275
+
276
+ # Input batch, heads, length, hidden_size
277
+ n, h, t, d = query_layer.size()
278
+ n_blocks = t // self.block_size
279
+ assert t % self.block_size == 0
280
+
281
+ key_layer = self.build_lsg_inputs(
282
+ key_layer,
283
+ sparse_key,
284
+ global_key
285
+ )
286
+ del sparse_key
287
+ del global_key
288
+
289
+ value_layer = self.build_lsg_inputs(
290
+ value_layer,
291
+ sparse_value,
292
+ global_value
293
+ )
294
+ del sparse_value
295
+ del global_value
296
+
297
+ attention_mask = self.build_lsg_inputs(
298
+ attention_mask,
299
+ sparse_mask,
300
+ global_mask.transpose(-1, -2),
301
+ is_attn_mask=True
302
+ ).transpose(-1, -2)
303
+ del sparse_mask
304
+ del global_mask
305
+
306
+ # expect (..., t, d) shape
307
+ # Compute attention
308
+ context_layer = self.attention(
309
+ query_layer=self.chunk(query_layer, n_blocks),
310
+ key_layer=key_layer,
311
+ value_layer=value_layer,
312
+ attention_mask=attention_mask
313
+ )
314
+
315
+ return context_layer.reshape(n, h, -1, d)
316
+
317
+ def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
318
+
319
+ size, step = self.local_shapes
320
+ s = (size - step) // 2
321
+
322
+ # Pad before block reshaping
323
+ if is_attn_mask:
324
+ pad_value = torch.finfo(hidden_states.dtype).min
325
+ hidden_states = hidden_states.transpose(-1, -2)
326
+ else:
327
+ pad_value = 0
328
+
329
+ hidden_states = torch.nn.functional.pad(
330
+ hidden_states.transpose(-1, -2),
331
+ pad=(s, s),
332
+ value=pad_value
333
+ ).transpose(-1, -2)
334
+
335
+ # Make blocks
336
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
337
+
338
+ # Skip third block if causal
339
+ if self.is_causal:
340
+ return hidden_states[..., :size*2//3, :]
341
+
342
+ return hidden_states
343
+
344
+ def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
345
+
346
+ size, step = self.sparse_shapes
347
+
348
+ # In case of odd case
349
+ odd_offset = (step % 2)
350
+
351
+ # n, h, t, d*2 + 1
352
+ size = size*2
353
+ s = (size - step) // 2 + odd_offset
354
+
355
+ # Pad before block reshaping
356
+ if is_attn_mask:
357
+ pad_value = torch.finfo(hidden_states.dtype).min
358
+ hidden_states = hidden_states.transpose(-1, -2)
359
+ else:
360
+ pad_value = 0
361
+
362
+ hidden_states = torch.nn.functional.pad(
363
+ hidden_states.transpose(-1, -2),
364
+ pad=(s, s),
365
+ value=pad_value
366
+ ).transpose(-1, -2)
367
+
368
+ # Make blocks
369
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
370
+
371
+ # Fix case where block_size == sparsify_factor
372
+ if odd_offset:
373
+ hidden_states = hidden_states[..., :-1, :, :]
374
+
375
+ # Indexes for selection
376
+ u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
377
+ s = self.sparse_block_size
378
+
379
+ # Skip right block if causal
380
+ if self.is_causal:
381
+ return hidden_states[..., u-s:u, :]
382
+
383
+ u_ = u + odd_offset
384
+ return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
385
+
386
+ def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
387
+
388
+ n, h, b, t, d = x_local.size()
389
+ x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
390
+ if x_sparse is not None:
391
+ return torch.cat([x_global, x_sparse, x_local], dim=dim)
392
+ return torch.cat([x_global, x_local], dim=dim)
393
+
394
+ def chunk(self, x, n_blocks):
395
+
396
+ t, d = x.size()[-2:]
397
+ return x.reshape(*x.size()[:-2], n_blocks, -1, d)
398
+
399
+
400
+ class LSGXLMRobertaEmbeddings(XLMRobertaEmbeddings):
401
+
402
+ def __init__(self, config):
403
+ super().__init__(config)
404
+
405
+ self.num_global_tokens = config.num_global_tokens
406
+
407
+ # Hardcoded but partially trained
408
+ self.global_embeddings = nn.Embedding(512, embedding_dim=config.hidden_size, )
409
+
410
+ self.block_size = config.block_size
411
+
412
+ def forward(
413
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
414
+ ):
415
+ if position_ids is None:
416
+ if input_ids is not None:
417
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
418
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
419
+ else:
420
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
421
+
422
+ if input_ids is not None:
423
+ input_shape = input_ids.size()
424
+ else:
425
+ input_shape = inputs_embeds.size()[:-1]
426
+
427
+ seq_length = input_shape[1]
428
+
429
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
430
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
431
+ # issue #5664
432
+ if token_type_ids is None:
433
+ if hasattr(self, "token_type_ids"):
434
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
435
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
436
+ token_type_ids = buffered_token_type_ids_expanded
437
+ else:
438
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
439
+
440
+ if inputs_embeds is None:
441
+ inputs_embeds = self.word_embeddings(input_ids)
442
+ token_type_embeddings = self.token_type_embeddings(token_type_ids[:, :seq_length])
443
+
444
+ embeddings = inputs_embeds + token_type_embeddings
445
+ if self.position_embedding_type == "absolute":
446
+ position_embeddings = self.position_embeddings(position_ids[:, :seq_length])
447
+ embeddings += position_embeddings
448
+
449
+ #if self.num_global_tokens < 0:
450
+ n, t, d = embeddings.size()
451
+
452
+ # Add global_tokens
453
+ indexes = torch.arange(self.num_global_tokens, device=embeddings.device).reshape(1, -1)
454
+ global_embeddings = self.global_embeddings(indexes)
455
+ embeddings = torch.cat([global_embeddings.expand(n, -1, d), embeddings], dim=-2)
456
+
457
+ embeddings = self.LayerNorm(embeddings)
458
+ embeddings = self.dropout(embeddings)
459
+ return embeddings
460
+
461
+
462
+ class LSGAttention(XLMRobertaAttention):
463
+
464
+ def __init__(self, config):
465
+
466
+ super().__init__(config)
467
+
468
+ self.self = LSGSelfAttention(config)
469
+
470
+
471
+ class LSGSelfAttention(BaseSelfAttention):
472
+ '''
473
+ Compute local attention with overlapping blocs
474
+ Use global attention for tokens with highest norm
475
+ '''
476
+ def __init__(self, config):
477
+ super().__init__()
478
+
479
+ self.init_modules(config)
480
+
481
+ self.block_size = config.block_size
482
+ self.sparse_block_size = config.sparse_block_size
483
+ self.num_global_tokens = config.num_global_tokens
484
+ self.sparsity_factor = config.sparsity_factor
485
+ self.is_causal = config.is_decoder
486
+ self.is_decoder = config.is_decoder
487
+
488
+ self.attention = LSGAttentionProduct(
489
+ config,
490
+ block_size=config.block_size,
491
+ sparse_block_size=config.sparse_block_size,
492
+ sparsity_factor=self.sparsity_factor,
493
+ is_causal=self.is_causal
494
+ )
495
+
496
+ if self.is_causal:
497
+ self.causal_attention = CausalAttentionProduct(config)
498
+ self.full_attention = BaseAttentionProduct(config)
499
+
500
+ sparse_functions = {
501
+ "norm": self.get_sparse_tokens_with_norm,
502
+ "pooling": self.get_sparse_tokens_with_pooling,
503
+ "lsh": self.get_sparse_tokens_with_lsh,
504
+ "stride": self.get_sparse_tokens_with_stride,
505
+ "block_stride": self.get_sparse_tokens_with_block_stride,
506
+ "bos_pooling": self.get_sparse_tokens_with_bos_pooling
507
+ }
508
+
509
+ self.sparsity_type = config.sparsity_type
510
+ self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda w, x, y, z: (None, None, None))
511
+
512
+ if config.sparsity_type == "lsh":
513
+ self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
514
+
515
+ def get_sparse_tokens_with_norm(self, queries, keys, values, mask):
516
+
517
+ if self.sparsity_factor == 1:
518
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
519
+
520
+ with torch.no_grad():
521
+
522
+ block_size = min(self.block_size, self.sparse_block_size)
523
+ key_norm = keys.detach().norm(dim=-1, keepdim=True)
524
+ key_norm = key_norm * ~mask.transpose(-1, -2).bool()
525
+ key_norm = self.chunk(key_norm, block_size)
526
+
527
+ n, h, b, t, d = key_norm.size()
528
+
529
+ idx = key_norm.argsort(dim=-2)
530
+ del key_norm
531
+ idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
532
+
533
+ split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
534
+ sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
535
+
536
+ d = keys.size()[-1]
537
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
538
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
539
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
540
+
541
+ return keys, values, mask
542
+
543
+ def get_sparse_tokens_with_pooling(self, queries, keys, values, mask):
544
+
545
+ if self.sparsity_factor == 1:
546
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
547
+
548
+ keys = self.chunk(keys, self.sparsity_factor)
549
+ values = self.chunk(values, self.sparsity_factor)
550
+
551
+ n, h, b, t, d = keys.size()
552
+ mask = mask.reshape(n, 1, b, 1, t)
553
+ mask = ~mask.transpose(-1, -2).bool()
554
+
555
+ keys = keys * mask
556
+ values = values * mask
557
+
558
+ mask = mask.sum(dim=-2)
559
+ keys = keys.sum(dim=-2) / (mask + 1e-6)
560
+ values = values.sum(dim=-2) / (mask + 1e-6)
561
+
562
+ mask = (1. - mask.clamp(0, 1))
563
+ mask *= torch.finfo(mask.dtype).min
564
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
565
+
566
+ def get_sparse_tokens_with_stride(self, queries, keys, values, mask):
567
+
568
+ if self.sparsity_factor == 1:
569
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
570
+
571
+ n, h, t, d = keys.size()
572
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
573
+ sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
574
+ sparse_idx = sparse_idx.expand(n, h, -1, 1)
575
+
576
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
577
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
578
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
579
+
580
+ return keys, values, mask
581
+
582
+ def get_sparse_tokens_with_block_stride(self, queries, keys, values, mask):
583
+
584
+ if self.sparsity_factor == 1:
585
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
586
+
587
+ n, h, t, d = keys.size()
588
+
589
+ t, b = self.block_size, t // self.block_size
590
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
591
+ sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
592
+ sparse_idx = (sparse_idx % t)
593
+ sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
594
+ sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
595
+
596
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
597
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
598
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
599
+
600
+ return keys, values, mask
601
+
602
+ def get_sparse_tokens_with_lsh(self, queries, keys, values, mask):
603
+
604
+ if self.sparsity_factor == 1:
605
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
606
+
607
+ if self.sparsity_factor == self.sparse_block_size:
608
+ return self.get_sparse_tokens_with_bos_pooling(queries, keys, values, mask)
609
+
610
+ block_size = min(self.block_size, self.sparse_block_size)
611
+ keys = self.chunk(keys, block_size)
612
+ values = self.chunk(values, block_size)
613
+
614
+ n, h, b, t, d = keys.size()
615
+ mask = mask.reshape(n, 1, b, 1, t)
616
+ mask = ~mask.transpose(-1, -2).bool()
617
+
618
+ keys = keys * mask
619
+ values = values * mask
620
+ mask = mask.expand(-1, h, -1, -1, -1).float()
621
+
622
+ extra_factor = 1
623
+
624
+ for _ in range(self.lsh_num_pre_rounds):
625
+ keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
626
+
627
+ keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
628
+ keys /= mask + 1e-8
629
+ values /= mask + 1e-8
630
+
631
+ mask = (1. - mask.clamp(0, 1))
632
+ mask *= torch.finfo(mask.dtype).min
633
+
634
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
635
+
636
+ def lsh_round(self, keys, values, mask, output_size):
637
+
638
+ with torch.no_grad():
639
+
640
+ n_hashes = output_size // 2
641
+ n, h, b, t, d = keys.size()
642
+ binary_mask = mask.clamp(0, 1)
643
+
644
+ indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
645
+ indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
646
+
647
+ n, h, b, t, d = keys.size()
648
+
649
+ x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
650
+ mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
651
+ keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
652
+ values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
653
+ mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
654
+
655
+ return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
656
+
657
+ def get_sparse_tokens_with_bos_pooling(self, queries, keys, values, mask):
658
+
659
+ if self.sparsity_factor == 1:
660
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
661
+
662
+ queries = queries.unsqueeze(-3)
663
+ mask = self.chunk(mask.transpose(-1, -2), self.sparsity_factor).transpose(-1, -2)
664
+ keys = self.chunk(keys, self.sparsity_factor)
665
+ values = self.chunk(values, self.sparsity_factor)
666
+
667
+ n, h, b, t, d = keys.size()
668
+ scores = (queries[..., :1, :] @ keys.transpose(-1, -2)) / math.sqrt(d)
669
+ if mask is not None:
670
+ scores = scores + mask
671
+
672
+ scores = torch.softmax(scores, dim=-1)
673
+ keys = scores @ keys
674
+ values = scores @ values
675
+ mask = mask.mean(dim=-1)
676
+ mask[mask != torch.finfo(mask.dtype).min] = 0
677
+
678
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
679
+
680
+ def forward(
681
+ self,
682
+ hidden_states,
683
+ attention_mask=None,
684
+ head_mask=None,
685
+ encoder_hidden_states=None,
686
+ encoder_attention_mask=None,
687
+ past_key_value=None,
688
+ output_attentions=False,
689
+ ):
690
+
691
+ query_layer = self.query(hidden_states)
692
+
693
+ # If this is instantiated as a cross-attention module, the keys
694
+ # and values come from an encoder; the attention mask needs to be
695
+ # such that the encoder's padding tokens are not attended to.
696
+ is_cross_attention = encoder_hidden_states is not None
697
+
698
+ if is_cross_attention and past_key_value is not None:
699
+ # reuse k,v, cross_attentions
700
+ key_layer = past_key_value[0]
701
+ value_layer = past_key_value[1]
702
+ attention_mask = encoder_attention_mask
703
+ elif is_cross_attention:
704
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
705
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
706
+ attention_mask = encoder_attention_mask
707
+ elif past_key_value is not None:
708
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
709
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
710
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
711
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
712
+ else:
713
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
714
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
715
+
716
+ query_layer = self.transpose_for_scores(query_layer)
717
+
718
+ if self.is_decoder:
719
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
720
+ # Further calls to cross_attention layer can then reuse all cross-attention
721
+ # key/value_states (first "if" case)
722
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
723
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
724
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
725
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
726
+ past_key_value = (key_layer, value_layer)
727
+
728
+ if is_cross_attention:
729
+ outputs = self.cross_attention_forward(
730
+ query_layer=query_layer,
731
+ key_layer=key_layer,
732
+ value_layer=value_layer,
733
+ attention_mask=attention_mask,
734
+ output_attentions=output_attentions
735
+ )
736
+ else:
737
+ outputs = self.causal_forward(
738
+ query_layer,
739
+ key_layer,
740
+ value_layer,
741
+ attention_mask=attention_mask,
742
+ output_attentions=output_attentions,
743
+ )
744
+
745
+ outputs = outputs + ((key_layer, value_layer),)
746
+
747
+ else:
748
+ outputs = self.not_causal_forward(
749
+ query_layer,
750
+ key_layer,
751
+ value_layer,
752
+ attention_mask=attention_mask,
753
+ output_attentions=output_attentions
754
+ )
755
+
756
+ return outputs
757
+
758
+ def causal_forward(
759
+ self,
760
+ query_layer,
761
+ key_layer,
762
+ value_layer,
763
+ attention_mask=None,
764
+ output_attentions=False,
765
+ ):
766
+
767
+ n, h, t, d = key_layer.size()
768
+
769
+ # Cat global mask
770
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
771
+
772
+ # Split input into global tokens and other tokens
773
+ split = (self.num_global_tokens, t - self.num_global_tokens)
774
+ global_query, query_layer = query_layer.split(split, dim=-2)
775
+
776
+ # Use normal causal attention if local attention covers every tokens
777
+ if t <= 2 * self.block_size + self.num_global_tokens:
778
+ context_layer = self.causal_attention(
779
+ query_layer=query_layer,
780
+ key_layer=key_layer,
781
+ value_layer=value_layer,
782
+ attention_mask=attention_mask,
783
+ causal_shape=(t - self.num_global_tokens, t - self.num_global_tokens)
784
+ )
785
+
786
+ context_layer = torch.cat([global_query, context_layer], dim=-2)
787
+ return (self.reshape_output(context_layer), )
788
+
789
+ # Split K Q M on global and non global
790
+ global_key, key_layer = key_layer.split(split, dim=-2)
791
+ global_value, value_layer = value_layer.split(split, dim=-2)
792
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
793
+
794
+ n, h, t, d = key_layer.size()
795
+
796
+ # Get sparse idx
797
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
798
+ if self.sparse_block_size and self.sparsity_factor > 0:
799
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(query_layer, key_layer, value_layer, attention_mask)
800
+
801
+ # Expand masks on heads
802
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
803
+ global_mask = global_mask.expand(-1, h, -1, -1)
804
+
805
+ # Compute dot product attention
806
+ context_layer = self.attention(
807
+ query_layer,
808
+ key_layer,
809
+ value_layer,
810
+ attention_mask,
811
+ sparse_key=sparse_key,
812
+ sparse_value=sparse_value,
813
+ sparse_mask=sparse_mask,
814
+ global_key=global_key,
815
+ global_value=global_value,
816
+ global_mask=global_mask
817
+ )
818
+
819
+ # Merge pseudo global (causal) and local-sparse tokens
820
+ context_layer = torch.cat([global_query, context_layer], dim=-2)
821
+ context_layer = self.reshape_output(context_layer)
822
+
823
+ return (context_layer,)
824
+
825
+ def not_causal_forward(
826
+ self,
827
+ query_layer,
828
+ key_layer,
829
+ value_layer,
830
+ attention_mask=None,
831
+ output_attentions=False,
832
+ ):
833
+
834
+ n, h, t, d = query_layer.size()
835
+
836
+ # Cat global mask
837
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
838
+
839
+ # Use normal attention if local attention covers every tokens
840
+ if t <= 2 * self.block_size + self.num_global_tokens:
841
+ context_layer = self.full_attention(
842
+ query_layer=query_layer,
843
+ key_layer=key_layer,
844
+ value_layer=value_layer,
845
+ attention_mask=attention_mask
846
+ )
847
+ return (self.reshape_output(context_layer), )
848
+
849
+ # Split input into global tokens and other tokens
850
+ split = (self.num_global_tokens, t - self.num_global_tokens)
851
+ global_query, query_layer = query_layer.split(split, dim=-2)
852
+
853
+ # Get global_attention
854
+ bos = self.full_attention(
855
+ query_layer=global_query,
856
+ key_layer=key_layer,
857
+ value_layer=value_layer,
858
+ attention_mask=attention_mask
859
+ )
860
+
861
+ # Split K Q M on global and non global
862
+ global_key, key_layer = key_layer.split(split, dim=-2)
863
+ global_value, value_layer = value_layer.split(split, dim=-2)
864
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
865
+
866
+ n, h, t, d = key_layer.size()
867
+
868
+ # Get sparse idx
869
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
870
+
871
+ if self.sparse_block_size and self.sparsity_factor > 0:
872
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(query_layer, key_layer, value_layer, attention_mask)
873
+
874
+ # Expand masks on heads
875
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
876
+ global_mask = global_mask.expand(-1, h, -1, -1)
877
+
878
+ # Compute dot product attention
879
+ context_layer = self.attention(
880
+ query_layer,
881
+ key_layer,
882
+ value_layer,
883
+ attention_mask,
884
+ sparse_key=sparse_key,
885
+ sparse_value=sparse_value,
886
+ sparse_mask=sparse_mask,
887
+ global_key=global_key,
888
+ global_value=global_value,
889
+ global_mask=global_mask
890
+ )
891
+
892
+ # Merge global and local-sparse tokens
893
+ context_layer = torch.cat([bos, context_layer], dim=-2)
894
+ context_layer = self.reshape_output(context_layer)
895
+
896
+ return (context_layer,)
897
+
898
+ def cross_attention_forward(
899
+ self,
900
+ query_layer,
901
+ key_layer,
902
+ value_layer,
903
+ attention_mask=None,
904
+ output_attentions=False,
905
+ ):
906
+
907
+ context_layer = self.full_attention(
908
+ query_layer=query_layer,
909
+ key_layer=key_layer,
910
+ value_layer=value_layer,
911
+ attention_mask=attention_mask
912
+ )
913
+ return (self.reshape_output(context_layer), )
914
+
915
+ def chunk(self, x, chunk_size):
916
+
917
+ n, h, t, d = x.size()
918
+ return x.reshape(n, h, -1, chunk_size, d)
919
+
920
+
921
+ class LSGXLMRobertaLayer(XLMRobertaLayer):
922
+
923
+ def __init__(self, config):
924
+
925
+ super().__init__(config)
926
+
927
+ self.attention = LSGAttention(config)
928
+ if self.add_cross_attention:
929
+ assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
930
+ self.crossattention = LSGAttention(config)
931
+
932
+
933
+ class LSGXLMRobertaEncoder(XLMRobertaEncoder):
934
+
935
+ def __init__(self, config):
936
+
937
+ super().__init__(config)
938
+ self.layer = nn.ModuleList([LSGXLMRobertaLayer(config) for _ in range(config.num_hidden_layers)])
939
+
940
+ assert hasattr(config, "num_global_tokens")
941
+ self.num_global_tokens = config.num_global_tokens
942
+ self.pad_idx = config.pad_token_id
943
+
944
+ assert hasattr(config, "block_size") and hasattr(config, "adaptive")
945
+ self.block_size = config.block_size
946
+ self.adaptive = config.adaptive
947
+ self.mask_first_token = config.mask_first_token
948
+ self.pool_with_global = config.pool_with_global
949
+
950
+ def forward(
951
+ self,
952
+ hidden_states: torch.Tensor,
953
+ attention_mask: Optional[torch.FloatTensor] = None,
954
+ head_mask: Optional[torch.FloatTensor] = None,
955
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
956
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
957
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
958
+ use_cache: Optional[bool] = None,
959
+ output_attentions: Optional[bool] = False,
960
+ output_hidden_states: Optional[bool] = False,
961
+ return_dict: Optional[bool] = True,
962
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
963
+
964
+ mask_value = torch.finfo(attention_mask.dtype).min
965
+ n, _, __, t = attention_mask.size()
966
+
967
+ if not (self.config.is_decoder and encoder_hidden_states is not None):
968
+ b = self.block_size * 2
969
+ pad = t % self.block_size
970
+
971
+ # Check if t is multiple of block_size and pad
972
+ if self.adaptive and t > b and pad > 0:
973
+ pad_length = self.block_size - pad
974
+ hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
975
+ attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=mask_value)
976
+
977
+ if self.mask_first_token:
978
+ attention_mask[..., 0] = mask_value
979
+
980
+ encoder_outputs = super().forward(
981
+ hidden_states=hidden_states,
982
+ attention_mask=attention_mask,
983
+ head_mask=head_mask,
984
+ encoder_hidden_states=encoder_hidden_states,
985
+ encoder_attention_mask=encoder_attention_mask,
986
+ past_key_values=past_key_values,
987
+ use_cache=use_cache,
988
+ output_attentions=output_attentions,
989
+ output_hidden_states=output_hidden_states,
990
+ return_dict=return_dict
991
+ )
992
+
993
+ sequence_output = encoder_outputs[0]
994
+ if self.pool_with_global:
995
+ sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
996
+
997
+ # Adapt sequence to initial shape
998
+ sequence_output = sequence_output[..., self.num_global_tokens: t + self.num_global_tokens, :]
999
+
1000
+ if not return_dict:
1001
+ return (sequence_output, ) + encoder_outputs[1:]
1002
+
1003
+ encoder_outputs.last_hidden_state = sequence_output
1004
+ return encoder_outputs
1005
+
1006
+
1007
+ class LSGXLMRobertaPreTrainedModel(XLMRobertaPreTrainedModel):
1008
+ """
1009
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1010
+ models.
1011
+ """
1012
+
1013
+ config_class = LSGXLMRobertaConfig
1014
+ base_model_prefix = "roberta"
1015
+ supports_gradient_checkpointing = True
1016
+ _no_split_modules = []
1017
+
1018
+ def _set_gradient_checkpointing(self, module, value=False):
1019
+ if isinstance(module, (XLMRobertaEncoder, LSGXLMRobertaEncoder)):
1020
+ module.gradient_checkpointing = value
1021
+
1022
+
1023
+ class LSGXLMRobertaModel(LSGXLMRobertaPreTrainedModel, XLMRobertaModel):
1024
+ """
1025
+ This class overrides :class:`~transformers.RobertaModel`. Please check the superclass for the appropriate
1026
+ documentation alongside usage examples.
1027
+ """
1028
+
1029
+ def __init__(self, config, add_pooling_layer=True):
1030
+
1031
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1032
+
1033
+ self.embeddings = LSGXLMRobertaEmbeddings(config)
1034
+ self.encoder = LSGXLMRobertaEncoder(config)
1035
+ self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
1036
+
1037
+ if config.add_cross_attention:
1038
+ logger.warning(
1039
+ "Cross attention is computed using full attention since it is not LSG compatible."
1040
+ )
1041
+
1042
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1043
+ if self._use_flash_attention_2:
1044
+ logger.warning(
1045
+ "[WARNING flash-attention]: LSG doesnt support flash-attention currently"
1046
+ )
1047
+
1048
+ # Initialize weights and apply final processing
1049
+ self.post_init()
1050
+
1051
+ def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
1052
+
1053
+ # Do not rely on original triangular mask from BERT/RoBERTa for causalLM
1054
+ if attention_mask.dim() == 3:
1055
+ extended_attention_mask = attention_mask[:, None, :, :]
1056
+ elif attention_mask.dim() == 2:
1057
+ extended_attention_mask = attention_mask[:, None, None, :]
1058
+ else:
1059
+ raise ValueError(
1060
+ f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1061
+ )
1062
+
1063
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
1064
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(extended_attention_mask.dtype).min
1065
+
1066
+ return extended_attention_mask
1067
+
1068
+
1069
+ class LSGXLMRobertaForCausalLM(LSGXLMRobertaPreTrainedModel, XLMRobertaForCausalLM):
1070
+
1071
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
1072
+
1073
+ def __init__(self, config):
1074
+
1075
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1076
+
1077
+ if not config.is_decoder:
1078
+ logger.warning("If you want to use `LSGXLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
1079
+
1080
+ self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
1081
+ self.lm_head = XLMRobertaLMHead(config)
1082
+
1083
+ # Initialize weights and apply final processing
1084
+ self.post_init()
1085
+
1086
+
1087
+ class LSGXLMRobertaForMaskedLM(LSGXLMRobertaPreTrainedModel, XLMRobertaForMaskedLM):
1088
+ """
1089
+ This class overrides :class:`~transformers.RobertaForMaskedLM`. Please check the superclass for the appropriate
1090
+ documentation alongside usage examples.
1091
+ """
1092
+ config_class = LSGXLMRobertaConfig
1093
+ _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
1094
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
1095
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
1096
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
1097
+
1098
+ def __init__(self, config):
1099
+
1100
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1101
+
1102
+ if config.is_decoder:
1103
+ logger.warning(
1104
+ "If you want to use `LSGXLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
1105
+ "bi-directional self-attention."
1106
+ )
1107
+
1108
+ self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
1109
+ self.lm_head = XLMRobertaLMHead(config)
1110
+
1111
+ # Initialize weights and apply final processing
1112
+ self.post_init()
1113
+
1114
+
1115
+ class LSGXLMRobertaForSequenceClassification(LSGXLMRobertaPreTrainedModel, XLMRobertaForSequenceClassification):
1116
+ """
1117
+ This class overrides :class:`~transformers.RobertaForSequenceClassification`. Please check the superclass for the
1118
+ appropriate documentation alongside usage examples.
1119
+ """
1120
+
1121
+ def __init__(self, config):
1122
+
1123
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1124
+
1125
+ self.num_labels = config.num_labels
1126
+ self.config = config
1127
+
1128
+ self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
1129
+ self.classifier = XLMRobertaClassificationHead(config)
1130
+
1131
+ # Initialize weights and apply final processing
1132
+ self.post_init()
1133
+
1134
+
1135
+ class LSGXLMRobertaForMultipleChoice(LSGXLMRobertaPreTrainedModel, XLMRobertaForMultipleChoice):
1136
+ """
1137
+ This class overrides :class:`~transformers.RobertaForMultipleChoice`. Please check the superclass for the
1138
+ appropriate documentation alongside usage examples.
1139
+ """
1140
+ config_class = LSGXLMRobertaConfig
1141
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
1142
+
1143
+ def __init__(self, config):
1144
+
1145
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1146
+
1147
+ self.roberta = LSGXLMRobertaModel(config)
1148
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1149
+ self.classifier = nn.Linear(config.hidden_size, 1)
1150
+
1151
+ # Initialize weights and apply final processing
1152
+ self.post_init()
1153
+
1154
+
1155
+ class LSGXLMRobertaForTokenClassification(LSGXLMRobertaPreTrainedModel, XLMRobertaForTokenClassification):
1156
+ """
1157
+ This class overrides :class:`~transformers.RobertaForTokenClassification`. Please check the superclass for the
1158
+ appropriate documentation alongside usage examples.
1159
+ """
1160
+
1161
+ def __init__(self, config):
1162
+
1163
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1164
+
1165
+ self.num_labels = config.num_labels
1166
+
1167
+ self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
1168
+ classifier_dropout = (
1169
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1170
+ )
1171
+ self.dropout = nn.Dropout(classifier_dropout)
1172
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1173
+
1174
+ # Initialize weights and apply final processing
1175
+ self.post_init()
1176
+
1177
+
1178
+ class LSGXLMRobertaForQuestionAnswering(LSGXLMRobertaPreTrainedModel, XLMRobertaForQuestionAnswering):
1179
+ """
1180
+ This class overrides :class:`~transformers.RobertaForQuestionAnswering`. Please check the superclass for the
1181
+ appropriate documentation alongside usage examples.
1182
+ """
1183
+
1184
+ def __init__(self, config):
1185
+
1186
+ LSGXLMRobertaPreTrainedModel.__init__(self, config)
1187
+
1188
+ self.num_labels = config.num_labels
1189
+
1190
+ self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
1191
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1192
+
1193
+ # Initialize weights and apply final processing
1194
+ self.post_init()
1195
+
1196
+
1197
+ def str_to_class(classname):
1198
+ return getattr(sys.modules[__name__], classname)
1199
+
1200
+ # Register model in Auto API
1201
+ try:
1202
+ LSGXLMRobertaConfig.register_for_auto_class()
1203
+ for key, value in AUTO_MAP.items():
1204
+ str_to_class(value.split(".")[-1]).register_for_auto_class(key)
1205
+ except:
1206
+ warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
1207
+ warn("Update to transformers >= 4.36.1 to fix.")
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
3
+ size 17082734
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 4096,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a4a157c7952a6065c6e08217ab8419a638d8688669a5fad0c94e80bb92f5b2
3
+ size 4920