File size: 6,173 Bytes
1820156
e876caa
 
 
1820156
 
 
 
 
 
e876caa
1820156
e876caa
 
 
1820156
e876caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd9fb8
 
 
 
 
e876caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81104c
 
 
 
 
 
 
 
 
 
e876caa
1820156
 
 
c81104c
 
1820156
e876caa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
base_model:
- oxygen65/llm-jp-3-13b-finetune-2
- llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: cc-by-nc-sa-4.0
language:
- ja
datasets:
- elyza/ELYZA-tasks-100
---
# How to Use

## 1. load this model and tokenizer
```python
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json

model_name = "oxygen65/llm-jp-3-13b-finetune-3"

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
```

## 2. load Eval Datasets
```python
tasks = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        tasks.append(json.loads(item))
        item = ""

from datasets import load_dataset
sample_task_ds = load_dataset("elyza/ELYZA-tasks-100")
sample_tasks = sample_task_ds['test']
sample_tasks['input'][0]
```

## 3. set up retrievers
if you can't find "rank_bm25" python package in your environment

```bash
!pip install rank_bm25
```

```python
from rank_bm25 import BM25Okapi
from nltk.tokenize import word_tokenize
import nltk
import numpy as np


# 必要なデータをダウンロード(初回のみ)
nltk.download('punkt')
nltk.download('punkt_tab')

def search_similar_documents_bm25(query, sample_tasks):
    # トークン化(BM25はトークン化されたデータを要求します)
    tokenized_documents = [word_tokenize(doc) for doc in sample_tasks['input']]

    # BM25オブジェクトの作成
    bm25 = BM25Okapi(tokenized_documents)

    tokenized_query = word_tokenize(query)
    # 類似度の計算
    doc_scores = bm25.get_scores(tokenized_query)
    # 類似度が高い順にソート
    sorted_indexes = np.argsort(doc_scores)[::-1]

    indexes = []
    for i in range(len(doc_scores)):
        if doc_scores[sorted_indexes[i]] < 20.0:
            break
        else:
            indexes.append(sorted_indexes[i])
    
    return indexes

from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
SentTF = SentenceTransformer('all-MiniLM-L6-v2')
def seearch_similar_documents_neuralRetriver(query, sample_tasks):
    global SentTF
    emb1 = SentTF.encode([query])
    emb2 = SentTF.encode(sample_tasks['input'])
    # 全ての組み合わせで類似度を計算
    similarity_matrix = cosine_similarity(emb1, emb2) #時間かかるので先に計算しておくべき
    # 類似度が高い順にソート
    sorted_indexes = np.argsort(similarity_matrix[0])[::-1]
    #print(sorted_indexes)
    
    indexes = []
    for i in range(len(sample_tasks['input'])):
        if similarity_matrix[0][sorted_indexes[i]] < 0.75:
            break
        else:
            indexes.append(sorted_indexes[i])
    
    return indexes

def create_icl_prompt(input, sample_tasks, task_id):
    indexes_bm25 = search_similar_documents_bm25(input, sample_tasks)
    indexes_neu = seearch_similar_documents_neuralRetriver(input, sample_tasks)
    indexes = list(set(indexes_bm25 + indexes_neu))
    icl_prompt = ""
    if indexes == []:
        return ""
    
    icl_prompt = f"""## 例題\n"""
    for i in range(len(indexes)):
        icl_prompt += f"""### 指示
{sample_tasks["input"][indexes[i]]}
### 回答
{sample_tasks["output"][indexes[i]]}
"""
    icl_prompt += f"""
## 本題: 以下の指示に従って回答してください。step by stepで回答してください。
"""
    return icl_prompt 

create_icl_prompt(tasks[2]["input"], sample_tasks, 0)
```

### 4. Inference
```python
# llmjp
import re
pattern = r"^以下.*$"

# プロンプトの作成
sys_prompt = ""
icl_prompt = ""
results = []
loop = 0
for data in tqdm(tasks):
  task_id = data["task_id"]
  input = data["input"]
  # in context learning用のプロンプト
  icl_prompt = create_icl_prompt(input, sample_tasks, task_id)
  
  prompt = f"""{sys_prompt}{icl_prompt}### 指示
{input}
### 回答
"""  
  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          max_new_tokens=512,
          do_sample=False,
          repetition_penalty=1.2,
          eos_token_id=tokenizer.eos_token_id,
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  while (True): #とりあえず出力。
    line = output.splitlines()
    if re.match(pattern, line[0]) and len(line) == 1:
      print(f"#=========================  Unexpected answer =========================#\n {line}")
      outputs = model.generate(
          tokenized_input,
          max_new_tokens=512,
          do_sample=True,
          temperature=0.4,
          repetition_penalty=1.2
      )[0]
      output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
    else: break  


  results.append({"task_id": data["task_id"], "input": input, "output": output})
  
  print(f"task_id: {data['task_id']}, prompt: {prompt}, output: {output}")
  
```

### 5. Dump results
```python
import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')
```

# Uploaded  model

- **Developed by:** oxygen65  

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)