--- library_name: transformers license: apache-2.0 inference: true tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: plant_disease_detection(vriskharakshak) results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9811046511627907 --- # plant_disease_detection(vriksharakshak) This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0880 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure # use this model ```python from transformers import pipeline from PIL import Image import requests # Load the image classification pipeline with a specific model pipe = pipeline("image-classification", "ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease") # Load the image from a URL url = 'https://huggingface.co/nielsr/convnext-tiny-finetuned-eurostat/resolve/main/forest.png' image = Image.open(requests.get(url, stream=True).raw) # Classify the image results = pipe(image) # Display the results print("Predictions:") for result in results: print(f"Label: {result['label']}, Score: {result['score']:.4f}") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1968 | 0.9983 | 145 | 0.0880 | 0.9811 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1