File size: 12,433 Bytes
9844a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""PyTorch MLE (Mnaga Line Extraction) model"""

from dataclasses import dataclass

import torch
import torch.nn as nn

from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput, BaseModelOutput
from transformers.activations import ACT2FN

from .configuration_mle import MLEConfig


@dataclass
class MLEModelOutput(ModelOutput):
    last_hidden_state: torch.FloatTensor | None = None


@dataclass
class MLEForAnimeLineExtractionOutput(ModelOutput):
    last_hidden_state: torch.FloatTensor | None = None
    pixel_values: torch.Tensor | None = None


class MLEBatchNorm(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
        in_features: int,
    ):
        super().__init__()

        self.norm = nn.BatchNorm2d(in_features, eps=config.batch_norm_eps)
        # the original model uses leaky_relu
        if config.hidden_act == "leaky_relu":
            self.act_fn = nn.LeakyReLU(negative_slope=config.negative_slope)
        else:
            self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.norm(hidden_states)
        hidden_states = self.act_fn(hidden_states)

        return hidden_states


class MLEResBlock(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
        in_channels: int,
        out_channels: int,
        stride_size: int,
    ):
        super().__init__()

        self.norm1 = MLEBatchNorm(config, in_channels)
        self.conv1 = nn.Conv2d(
            in_channels,
            out_channels,
            config.block_kernel_size,
            stride=stride_size,
            padding=config.block_kernel_size // 2,
        )

        self.norm2 = MLEBatchNorm(config, out_channels)
        self.conv2 = nn.Conv2d(
            out_channels,
            out_channels,
            config.block_kernel_size,
            stride=1,
            padding=config.block_kernel_size // 2,
        )

        if in_channels != out_channels or stride_size != 1:
            self.resize = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride_size,
            )
        else:
            self.resize = None

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        output = self.norm1(hidden_states)
        output = self.conv1(output)
        output = self.norm2(output)
        output = self.conv2(output)

        if self.resize is not None:
            resized_input = self.resize(hidden_states)
            output += resized_input
        else:
            output += hidden_states

        return output


class MLEEncoderLayer(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
        in_features: int,
        out_features: int,
        num_layers: int,
        stride_sizes: list[int],
    ):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                MLEResBlock(
                    config,
                    in_channels=in_features if i == 0 else out_features,
                    out_channels=out_features,
                    stride_size=stride_sizes[i],
                )
                for i in range(num_layers)
            ]
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        for block in self.blocks:
            hidden_states = block(hidden_states)
        return hidden_states


class MLEEncoder(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
    ):
        super().__init__()

        self.layers = nn.ModuleList(
            [
                MLEEncoderLayer(
                    config,
                    in_features=(
                        config.in_channels
                        if i == 0
                        else config.in_channels
                        * config.block_patch_size
                        * (config.upsample_ratio ** (i - 1))
                    ),
                    out_features=config.in_channels
                    * config.block_patch_size
                    * (config.upsample_ratio**i),
                    num_layers=num_layers,
                    stride_sizes=(
                        [
                            1 if i_layer < num_layers - 1 else 2
                            for i_layer in range(num_layers)
                        ]
                        if i > 0
                        else [1 for _ in range(num_layers)]
                    ),
                )
                for i, num_layers in enumerate(config.num_encoder_layers)
            ]
        )

    def forward(
        self, hidden_states: torch.Tensor
    ) -> tuple[torch.Tensor, tuple[torch.Tensor, ...]]:
        all_hidden_states: tuple[torch.Tensor, ...] = ()
        for layer in self.layers:
            hidden_states = layer(hidden_states)
            all_hidden_states += (hidden_states,)
        return hidden_states, all_hidden_states


class MLEUpsampleBlock(nn.Module):
    def __init__(self, config: MLEConfig, in_features: int, out_features: int):
        super().__init__()

        self.norm = MLEBatchNorm(config, in_features=in_features)
        self.conv = nn.Conv2d(
            in_features,
            out_features,
            config.block_kernel_size,
            stride=1,
            padding=config.block_kernel_size // 2,
        )
        self.upsample = nn.Upsample(scale_factor=config.upsample_ratio)

    def forward(self, hidden_states: torch.Tensor):
        output = self.norm(hidden_states)
        output = self.conv(output)
        output = self.upsample(output)

        return output


class MLEUpsampleResBlock(nn.Module):
    def __init__(self, config: MLEConfig, in_features: int, out_features: int):
        super().__init__()

        self.upsample = MLEUpsampleBlock(
            config, in_features=in_features, out_features=out_features
        )

        self.norm = MLEBatchNorm(config, in_features=out_features)
        self.conv = nn.Conv2d(
            out_features,
            out_features,
            config.block_kernel_size,
            stride=1,
            padding=config.block_kernel_size // 2,
        )

        if in_features != out_features:
            self.resize = nn.Sequential(
                nn.Conv2d(
                    in_features,
                    out_features,
                    kernel_size=1,
                    stride=1,
                ),
                nn.Upsample(scale_factor=config.upsample_ratio),
            )
        else:
            self.resize = None

    def forward(self, hidden_states: torch.Tensor):
        output = self.upsample(hidden_states)
        output = self.norm(output)
        output = self.conv(output)

        if self.resize is not None:
            output += self.resize(hidden_states)

        return output


class MLEDecoderLayer(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
        in_features: int,
        out_features: int,
        num_layers: int,
    ):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                (
                    MLEResBlock(
                        config,
                        in_channels=out_features,
                        out_channels=out_features,
                        stride_size=1,
                    )
                    if i > 0
                    else MLEUpsampleResBlock(
                        config,
                        in_features=in_features,
                        out_features=out_features,
                    )
                )
                for i in range(num_layers)
            ]
        )

    def forward(
        self, hidden_states: torch.Tensor, shortcut_states: torch.Tensor
    ) -> torch.Tensor:
        for block in self.blocks:
            hidden_states = block(hidden_states)

        hidden_states += shortcut_states

        return hidden_states


class MLEDecoderHead(nn.Module):
    def __init__(self, config: MLEConfig, num_layers: int):
        super().__init__()

        self.layer = MLEEncoderLayer(
            config,
            in_features=config.block_patch_size,
            out_features=config.last_hidden_channels,
            stride_sizes=[1 for _ in range(num_layers)],
            num_layers=num_layers,
        )
        self.norm = MLEBatchNorm(config, in_features=config.last_hidden_channels)
        self.conv = nn.Conv2d(
            config.last_hidden_channels,
            out_channels=1,
            kernel_size=1,
            stride=1,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.layer(hidden_states)
        hidden_states = self.norm(hidden_states)
        pixel_values = self.conv(hidden_states)
        return pixel_values


class MLEDecoder(nn.Module):
    def __init__(
        self,
        config: MLEConfig,
    ):
        super().__init__()

        encoder_output_channels = (
            config.in_channels
            * config.block_patch_size
            * (config.upsample_ratio ** (len(config.num_encoder_layers) - 1))
        )
        upsample_ratio = config.upsample_ratio
        num_decoder_layers = config.num_decoder_layers

        self.layers = nn.ModuleList(
            [
                (
                    MLEDecoderLayer(
                        config,
                        in_features=encoder_output_channels // (upsample_ratio**i),
                        out_features=encoder_output_channels
                        // (upsample_ratio ** (i + 1)),
                        num_layers=num_layers,
                    )
                    if i < len(num_decoder_layers) - 1
                    else MLEDecoderHead(
                        config,
                        num_layers=num_layers,
                    )
                )
                for i, num_layers in enumerate(num_decoder_layers)
            ]
        )

    def forward(
        self,
        last_hidden_states: torch.Tensor,
        encoder_hidden_states: tuple[torch.Tensor, ...],
    ) -> torch.Tensor:
        hidden_states = last_hidden_states
        num_encoder_hidden_states = len(encoder_hidden_states)  # 5

        for i, layer in enumerate(self.layers):
            if i < len(self.layers) - 1:
                hidden_states = layer(
                    hidden_states,
                    # 0, 1, 2, 3, 4
                    # ↓  ↓  ↓  ↓  ↓
                    # 8, 7, 6, 5, 5
                    encoder_hidden_states[num_encoder_hidden_states - 2 - i],
                )
            else:
                # decoder head
                hidden_states = layer(hidden_states)

        return hidden_states


class MLEPretrainedModel(PreTrainedModel):
    config_class = MLEConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True


class MLEModel(MLEPretrainedModel):
    def __init__(self, config: MLEConfig):
        super().__init__(config)
        self.config = config

        self.encoder = MLEEncoder(config)
        self.decoder = MLEDecoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        encoder_output, all_hidden_states = self.encoder(pixel_values)
        decoder_output = self.decoder(encoder_output, all_hidden_states)

        return decoder_output


class MLEForAnimeLineExtraction(MLEPretrainedModel):
    def __init__(self, config: MLEConfig):
        super().__init__(config)

        self.model = MLEModel(config)

    def postprocess(self, output_tensor: torch.Tensor, input_shape: torch.Size):
        pixel_values = output_tensor[0, 0, :, :]
        pixel_values = torch.clip(pixel_values, 0, 255)

        pixel_values = pixel_values[0 : input_shape[2], 0 : input_shape[3]]
        return pixel_values

    def forward(
        self, pixel_values: torch.Tensor, return_dict: bool = True
    ) -> tuple[torch.Tensor, ...] | MLEForAnimeLineExtractionOutput:
        model_output = self.model(pixel_values)

        if not return_dict:
            return (model_output, self.postprocess(model_output, pixel_values.shape))

        else:
            return MLEForAnimeLineExtractionOutput(
                last_hidden_state=model_output,
                pixel_values=self.postprocess(model_output, pixel_values.shape),
            )