File size: 19,050 Bytes
5495955
 
c89293a
5495955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# copied from ViTImageProcessor (https://github.com/huggingface/transformers/blob/v4.37.2/src/transformers/models/vit/image_processing_vit.py)

"""Image processor class for Manga Line Extraction."""

from typing import Optional, List, Dict, Union, Tuple

import numpy as np
import cv2
from PIL import Image

from transformers.image_processing_utils import (
    BaseImageProcessor,
    BatchFeature,
    get_size_dict,
)
from transformers.image_transforms import (
    rescale,
    to_channel_dimension_format,
    _rescale_for_pil_conversion,
    to_pil_image,
)
from transformers.image_utils import (
    IMAGENET_STANDARD_MEAN,
    IMAGENET_STANDARD_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
    valid_images,
)
from transformers.utils import TensorType, logging

logger = logging.get_logger(__name__)


def resize_by_factor(
    image: np.ndarray,
    resize_factor: int,
    resample: PILImageResampling = None,
    data_format: Optional[Union[str, ChannelDimension]] = None,
    input_data_format: Optional[Union[str, ChannelDimension]] = None,
    return_numpy: bool = True,
):
    """
    Resizes `image` to `(height, width)` specified by `size` using the PIL library.

    Args:
        image (`np.ndarray`):
            The image to resize.
        resize_factor (`int`):
            Value for padding the image to a multiple of the factor.
        resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
            The filter to user for resampling.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the output image. If unset, will use the inferred format from the input.
        return_numpy (`bool`, *optional*, defaults to `True`):
            Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
            returned.
        input_data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the input image. If unset, will use the inferred format from the input.

    Returns:
        `np.ndarray`: The resized image.
    """

    resample = resample if resample is not None else PILImageResampling.BILINEAR

    # For all transformations, we want to keep the same data format as the input image unless otherwise specified.
    # The resized image from PIL will always have channels last, so find the input format first.
    if input_data_format is None:
        input_data_format = infer_channel_dimension_format(image)
    data_format = input_data_format if data_format is None else data_format

    # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
    # the pillow library to resize the image and then convert back to numpy
    do_rescale = False
    if not isinstance(image, Image.Image):
        do_rescale = _rescale_for_pil_conversion(image)
        image = to_pil_image(
            image, do_rescale=do_rescale, input_data_format=input_data_format
        )

    assert isinstance(image, Image.Image)

    width, height = (
        int(np.ceil(image.size[0] // resize_factor) * resize_factor),
        int(np.ceil(image.size[1] // resize_factor) * resize_factor),
    )
    # solid image
    new_image = Image.new(image.mode, (width, height), "white")

    # paste original image on top left
    new_image.paste(image)

    if return_numpy:
        new_image = np.array(new_image)
        # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
        # so we need to add it back if necessary.
        new_image = (
            np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image
        )
        # The image is always in channels last format after converting from a PIL image
        new_image = to_channel_dimension_format(
            new_image, data_format, input_channel_dim=ChannelDimension.LAST
        )
        # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
        # rescale it back to the original range.
        new_image = rescale(new_image, 1 / 255) if do_rescale else new_image

    return new_image


def greyscale(
    image: np.ndarray,
    data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
    input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
    return_numpy: bool = True,
):
    """
    Convert `image` to `greyscale` using the PIL library.

    Args:
        image (`np.ndarray`):
            The image to greyscale.
    Returns:
        `np.ndarray`: The greyscaled image.
    """

    if not isinstance(image, Image.Image):
        do_rescale = _rescale_for_pil_conversion(image)
        image = to_pil_image(
            image, do_rescale=do_rescale, input_data_format=input_data_format
        )

    assert isinstance(image, Image.Image)

    # do greyscale
    image = image.convert("L")

    if return_numpy:
        image = np.array(image)

        # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
        # so we need to add it back if necessary.
        image = np.expand_dims(image, axis=-1) if image.ndim == 2 else image

        # The image is always in channels last format after converting from a PIL image
        image = to_channel_dimension_format(
            image, data_format, input_channel_dim=ChannelDimension.LAST
        )
        # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
        # rescale it back to the original range.
        image = rescale(image, 1 / 255) if do_rescale else image

    return image


class MLEImageProcessor(BaseImageProcessor):
    r"""
    Constructs a MLE image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
            size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
        resize_factor (`int`, *optional*, defaults to `16`):
            Value for padding the image to a multiple of the factor.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `False`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `False`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        do_resize: bool = True,
        resize_factor: int = 16,
        do_greyscale: bool = True,
        resample: PILImageResampling = PILImageResampling.BILINEAR,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1.0,
        do_normalize: bool = False,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.do_resize = do_resize
        self.resize_factor = resize_factor
        self.do_greyscale = do_greyscale
        self.do_rescale = do_rescale
        self.do_normalize = do_normalize
        self.resample = resample
        self.rescale_factor = rescale_factor
        self.image_mean = (
            image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN[0]
        )
        self.image_std = (
            image_std if image_std is not None else IMAGENET_STANDARD_STD[0]
        )

    def resize(
        self,
        image: np.ndarray,
        resize_factor: int,
        resample: PILImageResampling = PILImageResampling.BILINEAR,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Resize an image to `(size["height"], size["width"])`.

        Args:
            image (`np.ndarray`):
                Image to resize.
            resize_factor (`int`):
                Value for padding the image to a multiple of the factor.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        """

        return resize_by_factor(
            image,
            resize_factor=resize_factor,
            resample=resample,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def greyscale(
        self,
        image: np.ndarray,
        data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
        input_data_format: Optional[
            Union[str, ChannelDimension]
        ] = ChannelDimension.FIRST,
        **kwargs,
    ):
        """
        Convert an image to greyscale.

        Args:
            image (`np.ndarray`):
                Image to greyscale

        Returns:
            `np.ndarray`: The greyscaled image.
        """

        return greyscale(
            image,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def preprocess(
        self,
        images: ImageInput,
        do_resize: Optional[bool] = None,
        resize_factor: Optional[int] = None,
        do_greyscale: Optional[bool] = None,
        resample: PILImageResampling = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ):
        """
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            resize_factor (`int`, *optional*, defaults to `self.resize_factor`):
                Value for padding the image to a multiple of the factor.
            resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
                `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
                an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        do_greyscale = do_greyscale if do_greyscale is not None else self.do_greyscale
        resample = resample if resample is not None else self.resample
        rescale_factor = (
            rescale_factor if rescale_factor is not None else self.rescale_factor
        )
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std

        resize_factor = (
            resize_factor if resize_factor is not None else self.resize_factor
        )

        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_resize and resize_factor is None:
            raise ValueError("Resize factor must be specified if do_resize is True.")

        if do_rescale and rescale_factor is None:
            raise ValueError("Rescale factor must be specified if do_rescale is True.")

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if is_scaled_image(images[0]) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        if do_resize:
            images = [
                self.resize(
                    image=image,
                    resize_factor=resize_factor,
                    resample=resample,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        if do_greyscale:
            images = [
                self.greyscale(
                    image=image,
                    data_format=data_format,
                    input_data_format=input_data_format,
                )
                for image in images
            ]
            # the channel would be set to 1, so input data format could't be estimated
            input_data_format = ChannelDimension.FIRST

        if do_rescale:
            images = [
                self.rescale(
                    image=image,
                    scale=rescale_factor,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        if do_normalize:
            images = [
                self.normalize(
                    image=image,
                    mean=image_mean,
                    std=image_std,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        images = [
            to_channel_dimension_format(
                image, data_format, input_channel_dim=input_data_format
            )
            for image in images
        ]

        data = {"pixel_values": images}
        return BatchFeature(data=data, tensor_type=return_tensors)