|
|
|
|
|
"""Image processor class for WD v14 Tagger.""" |
|
|
|
from typing import Optional, List, Dict, Union, Tuple |
|
|
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
|
|
from transformers.image_processing_utils import ( |
|
BaseImageProcessor, |
|
BatchFeature, |
|
get_size_dict, |
|
) |
|
from transformers.image_transforms import ( |
|
rescale, |
|
to_channel_dimension_format, |
|
_rescale_for_pil_conversion, |
|
to_pil_image, |
|
) |
|
from transformers.image_utils import ( |
|
IMAGENET_STANDARD_MEAN, |
|
IMAGENET_STANDARD_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
infer_channel_dimension_format, |
|
is_scaled_image, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from transformers.utils import TensorType, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def resize_by_factor( |
|
image: np.ndarray, |
|
resize_factor: int, |
|
resample: PILImageResampling = None, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
return_numpy: bool = True, |
|
): |
|
""" |
|
Resizes `image` to `(height, width)` specified by `size` using the PIL library. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
The image to resize. |
|
resize_factor (`int`): |
|
Value for padding the image to a multiple of the factor. |
|
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`): |
|
The filter to user for resampling. |
|
data_format (`ChannelDimension`, *optional*): |
|
The channel dimension format of the output image. If unset, will use the inferred format from the input. |
|
return_numpy (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is |
|
returned. |
|
input_data_format (`ChannelDimension`, *optional*): |
|
The channel dimension format of the input image. If unset, will use the inferred format from the input. |
|
|
|
Returns: |
|
`np.ndarray`: The resized image. |
|
""" |
|
|
|
resample = resample if resample is not None else PILImageResampling.BILINEAR |
|
|
|
|
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
data_format = input_data_format if data_format is None else data_format |
|
|
|
|
|
|
|
do_rescale = False |
|
if not isinstance(image, Image.Image): |
|
do_rescale = _rescale_for_pil_conversion(image) |
|
image = to_pil_image( |
|
image, do_rescale=do_rescale, input_data_format=input_data_format |
|
) |
|
|
|
assert isinstance(image, Image.Image) |
|
|
|
width, height = ( |
|
int(np.ceil(image.size[0] // resize_factor) * resize_factor), |
|
int(np.ceil(image.size[1] // resize_factor) * resize_factor), |
|
) |
|
|
|
new_image = Image.new(image.mode, (width, height), "white") |
|
|
|
|
|
new_image.paste(image) |
|
|
|
if return_numpy: |
|
new_image = np.array(new_image) |
|
|
|
|
|
new_image = ( |
|
np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image |
|
) |
|
|
|
new_image = to_channel_dimension_format( |
|
new_image, data_format, input_channel_dim=ChannelDimension.LAST |
|
) |
|
|
|
|
|
new_image = rescale(new_image, 1 / 255) if do_rescale else new_image |
|
|
|
return new_image |
|
|
|
|
|
def greyscale( |
|
image: np.ndarray, |
|
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, |
|
return_numpy: bool = True, |
|
): |
|
""" |
|
Convert `image` to `greyscale` using the PIL library. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
The image to greyscale. |
|
Returns: |
|
`np.ndarray`: The greyscaled image. |
|
""" |
|
|
|
if not isinstance(image, Image.Image): |
|
do_rescale = _rescale_for_pil_conversion(image) |
|
image = to_pil_image( |
|
image, do_rescale=do_rescale, input_data_format=input_data_format |
|
) |
|
|
|
assert isinstance(image, Image.Image) |
|
|
|
|
|
image = image.convert("L") |
|
|
|
if return_numpy: |
|
image = np.array(image) |
|
|
|
|
|
|
|
image = np.expand_dims(image, axis=-1) if image.ndim == 2 else image |
|
|
|
|
|
image = to_channel_dimension_format( |
|
image, data_format, input_channel_dim=ChannelDimension.LAST |
|
) |
|
|
|
|
|
image = rescale(image, 1 / 255) if do_rescale else image |
|
|
|
return image |
|
|
|
|
|
class MLEImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a MLE image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `(size["height"], |
|
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. |
|
resize_factor (`int`, *optional*, defaults to `16`): |
|
Value for padding the image to a multiple of the factor. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the |
|
`preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `False`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` |
|
parameter in the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the |
|
`preprocess` method. |
|
do_normalize (`bool`, *optional*, defaults to `False`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
resize_factor: int = 16, |
|
do_greyscale: bool = True, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1.0, |
|
do_normalize: bool = False, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.do_resize = do_resize |
|
self.resize_factor = resize_factor |
|
self.do_greyscale = do_greyscale |
|
self.do_rescale = do_rescale |
|
self.do_normalize = do_normalize |
|
self.resample = resample |
|
self.rescale_factor = rescale_factor |
|
self.image_mean = ( |
|
image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN[0] |
|
) |
|
self.image_std = ( |
|
image_std if image_std is not None else IMAGENET_STANDARD_STD[0] |
|
) |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
resize_factor: int, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image to `(size["height"], size["width"])`. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
resize_factor (`int`): |
|
Value for padding the image to a multiple of the factor. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): |
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. |
|
data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
|
Returns: |
|
`np.ndarray`: The resized image. |
|
""" |
|
|
|
return resize_by_factor( |
|
image, |
|
resize_factor=resize_factor, |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def greyscale( |
|
self, |
|
image: np.ndarray, |
|
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, |
|
input_data_format: Optional[ |
|
Union[str, ChannelDimension] |
|
] = ChannelDimension.FIRST, |
|
**kwargs, |
|
): |
|
""" |
|
Convert an image to greyscale. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to greyscale |
|
|
|
Returns: |
|
`np.ndarray`: The greyscaled image. |
|
""" |
|
|
|
return greyscale( |
|
image, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
resize_factor: Optional[int] = None, |
|
do_greyscale: Optional[bool] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
resize_factor (`int`, *optional*, defaults to `self.resize_factor`): |
|
Value for padding the image to a multiple of the factor. |
|
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): |
|
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has |
|
an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image values between [0 - 1]. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
do_greyscale = do_greyscale if do_greyscale is not None else self.do_greyscale |
|
resample = resample if resample is not None else self.resample |
|
rescale_factor = ( |
|
rescale_factor if rescale_factor is not None else self.rescale_factor |
|
) |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
|
|
resize_factor = ( |
|
resize_factor if resize_factor is not None else self.resize_factor |
|
) |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
if do_resize and resize_factor is None: |
|
raise ValueError("Resize factor must be specified if do_resize is True.") |
|
|
|
if do_rescale and rescale_factor is None: |
|
raise ValueError("Rescale factor must be specified if do_rescale is True.") |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if is_scaled_image(images[0]) and do_rescale: |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
if input_data_format is None: |
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
if do_resize: |
|
images = [ |
|
self.resize( |
|
image=image, |
|
resize_factor=resize_factor, |
|
resample=resample, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
if do_greyscale: |
|
images = [ |
|
self.greyscale( |
|
image=image, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
input_data_format = ChannelDimension.FIRST |
|
|
|
if do_rescale: |
|
images = [ |
|
self.rescale( |
|
image=image, |
|
scale=rescale_factor, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
if do_normalize: |
|
images = [ |
|
self.normalize( |
|
image=image, |
|
mean=image_mean, |
|
std=image_std, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
images = [ |
|
to_channel_dimension_format( |
|
image, data_format, input_channel_dim=input_data_format |
|
) |
|
for image in images |
|
] |
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|