Upload 2 files
Browse files- configuration_hiera.py +140 -0
- modeling_hiera.py +1086 -0
configuration_hiera.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Hiera model configuration"""
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
# HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
11 |
+
# "hoge/hoge": ("/config.json"),
|
12 |
+
# }
|
13 |
+
|
14 |
+
|
15 |
+
class HieraConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate a Hiera
|
18 |
+
model according to the specified arguments, defining the model architecture. Instantiating a
|
19 |
+
configuration with the defaults will yield a similar configuration to that of the Hiera
|
20 |
+
[/]()
|
21 |
+
architecture.
|
22 |
+
|
23 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
24 |
+
documentation from [`PretrainedConfig`] for more information.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
image_size (`int`, *optional*, defaults to 224):
|
28 |
+
The size (resolution) of each image.
|
29 |
+
patch_size (`list(int)`, *optional*, defaults to [7, 7]):
|
30 |
+
The size (resolution) of each patch.
|
31 |
+
stride_size (`list(int)`, *optional*, defaults to [4, 4]):
|
32 |
+
The size (resolution) of each stride.
|
33 |
+
padding_size (`list(int)`, *optional*, defaults to [3, 3]):
|
34 |
+
The size (resolution) of each padding.
|
35 |
+
num_channels (`int`, *optional*, defaults to 3):
|
36 |
+
The number of input channels.
|
37 |
+
embed_dim (`int`, *optional*, defaults to 96):
|
38 |
+
Dimensionality of patch embedding.
|
39 |
+
depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
|
40 |
+
Depth of each layer in the Transformer encoder.
|
41 |
+
num_heads (`list(int)`, *optional*, defaults to `[1, 2, 4, 8]`):
|
42 |
+
Number of attention heads in each layer of the Transformer encoder.
|
43 |
+
q_pool (`int`, *optional*, defaults to 3):
|
44 |
+
Number of q_pool stages.
|
45 |
+
q_stride (`list(int)`, *optional*, defaults to [2, 2]):
|
46 |
+
Size of stride of q_pool,
|
47 |
+
mask_unit_size (`list(int)`, *optional*, defaults to [8, 8]):
|
48 |
+
Size of mask unit in attention.
|
49 |
+
mask_unit_attention (`list(bool)`, *optional*, defaults to [True, True, False, False]):
|
50 |
+
Whether or not to enable mask unit attention in each stage.
|
51 |
+
separate_positional_embeds (`bool`, *optional*, defaults to False):
|
52 |
+
Whether or not to use separeted positional embeddings.
|
53 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
54 |
+
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
55 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
56 |
+
Stochastic depth rate.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
59 |
+
`"selu"` and `"gelu_new"` are supported.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
initializer_bias (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all bias matrices.
|
68 |
+
|
69 |
+
Example:
|
70 |
+
|
71 |
+
```python
|
72 |
+
>>> from transformers import HieraConfig, HieraModel
|
73 |
+
|
74 |
+
>>> # Initializing a Hiera / style configuration
|
75 |
+
>>> configuration = HieraConfig()
|
76 |
+
|
77 |
+
>>> # Initializing a model (with random weights) from the / style configuration
|
78 |
+
>>> model = HieraModel(configuration)
|
79 |
+
|
80 |
+
>>> # Accessing the model configuration
|
81 |
+
>>> configuration = model.config
|
82 |
+
```"""
|
83 |
+
|
84 |
+
model_type = "hiera"
|
85 |
+
|
86 |
+
attribute_map = {}
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
image_size=224,
|
91 |
+
patch_size=[7, 7],
|
92 |
+
stride_size=[4, 4],
|
93 |
+
padding_size=[3, 3],
|
94 |
+
num_channels=3,
|
95 |
+
embed_dim=96,
|
96 |
+
depths=[2, 3, 16, 3],
|
97 |
+
num_heads=[1, 2, 4, 8],
|
98 |
+
q_pool=3, # number of q_pool stages
|
99 |
+
q_stride=[2, 2],
|
100 |
+
mask_unit_size=[8, 8],
|
101 |
+
mask_unit_attention=[True, True, False, False],
|
102 |
+
separate_positional_embeds=False,
|
103 |
+
mlp_ratio=4.0,
|
104 |
+
drop_path_rate=0.0,
|
105 |
+
hidden_act="gelu",
|
106 |
+
layer_norm_eps=1e-6,
|
107 |
+
hidden_dropout_prob=0.0,
|
108 |
+
initializer_range=0.02,
|
109 |
+
initializer_bias=0.02,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
|
114 |
+
self.image_size = image_size
|
115 |
+
self.patch_size = patch_size
|
116 |
+
self.stride_size = stride_size
|
117 |
+
self.padding_size = padding_size
|
118 |
+
self.num_channels = num_channels
|
119 |
+
self.embed_dim = embed_dim
|
120 |
+
self.depths = depths
|
121 |
+
self.num_layers = len(depths)
|
122 |
+
self.num_heads = num_heads
|
123 |
+
self.mlp_ratio = mlp_ratio
|
124 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
125 |
+
self.drop_path_rate = drop_path_rate
|
126 |
+
self.hidden_act = hidden_act
|
127 |
+
self.layer_norm_eps = layer_norm_eps
|
128 |
+
|
129 |
+
assert q_pool < len(depths), "q_pool must be less than depths"
|
130 |
+
|
131 |
+
self.mask_unit_size = mask_unit_size
|
132 |
+
self.flat_mask_unit_size = int(math.prod(mask_unit_size))
|
133 |
+
self.mask_unit_attention = mask_unit_attention
|
134 |
+
self.q_pool = q_pool
|
135 |
+
self.q_stride = q_stride
|
136 |
+
self.flat_q_stride = int(math.prod(q_stride))
|
137 |
+
self.separate_positional_embeds = separate_positional_embeds
|
138 |
+
|
139 |
+
self.initializer_range = initializer_range
|
140 |
+
self.initializer_bias = initializer_bias
|
modeling_hiera.py
ADDED
@@ -0,0 +1,1086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch Hiera Transformer model."""
|
2 |
+
|
3 |
+
import collections.abc
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Optional, Tuple, Union, Type, List
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import (
|
17 |
+
ImageClassifierOutput,
|
18 |
+
BaseModelOutputWithPooling,
|
19 |
+
)
|
20 |
+
from transformers.modeling_utils import PreTrainedModel
|
21 |
+
from transformers.utils import (
|
22 |
+
ModelOutput,
|
23 |
+
add_code_sample_docstrings,
|
24 |
+
add_start_docstrings,
|
25 |
+
add_start_docstrings_to_model_forward,
|
26 |
+
logging,
|
27 |
+
)
|
28 |
+
|
29 |
+
from .configuration_hiera import HieraConfig
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
# General docstring
|
35 |
+
_CONFIG_FOR_DOC = "HieraConfig"
|
36 |
+
|
37 |
+
# Base docstring
|
38 |
+
_CHECKPOINT_FOR_DOC = "/"
|
39 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 64, 768]
|
40 |
+
|
41 |
+
# Image classification docstring
|
42 |
+
_IMAGE_CLASS_CHECKPOINT = "/"
|
43 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = ""
|
44 |
+
|
45 |
+
|
46 |
+
HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"/",
|
48 |
+
# See all Hiera models at https://huggingface.co/models?filter=hiera
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
def conv_nd(n: int) -> Type[nn.Module]:
|
53 |
+
"""
|
54 |
+
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
|
55 |
+
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
|
56 |
+
"""
|
57 |
+
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
|
58 |
+
|
59 |
+
|
60 |
+
def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor:
|
61 |
+
# Refer to `Unroll` to see how this performs a maxpool-Nd
|
62 |
+
return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values
|
63 |
+
|
64 |
+
|
65 |
+
def get_resized_mask(target_size: torch.Size, mask: torch.Tensor) -> torch.Tensor:
|
66 |
+
# target_size: [(T), (H), W]
|
67 |
+
# (spatial) mask: [B, C, (t), (h), w]
|
68 |
+
if mask is None:
|
69 |
+
return mask
|
70 |
+
|
71 |
+
assert len(mask.shape[2:]) == len(target_size)
|
72 |
+
if mask.shape[2:] != target_size:
|
73 |
+
return F.interpolate(mask.float(), size=target_size)
|
74 |
+
return mask
|
75 |
+
|
76 |
+
|
77 |
+
def do_masked_conv(
|
78 |
+
x: torch.Tensor, conv: nn.Module, mask: Optional[torch.Tensor] = None
|
79 |
+
) -> torch.Tensor:
|
80 |
+
"""Zero-out the masked regions of the input before conv.
|
81 |
+
Prevents leakage of masked regions when using overlapping kernels.
|
82 |
+
"""
|
83 |
+
if conv is None:
|
84 |
+
return x
|
85 |
+
if mask is None:
|
86 |
+
return conv(x)
|
87 |
+
|
88 |
+
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
|
89 |
+
return conv(x * mask.bool())
|
90 |
+
|
91 |
+
|
92 |
+
def undo_windowing(
|
93 |
+
x: torch.Tensor, shape: List[int], mu_shape: List[int]
|
94 |
+
) -> torch.Tensor:
|
95 |
+
"""
|
96 |
+
Restore spatial organization by undoing windowed organization of mask units.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
|
100 |
+
shape: current spatial shape, if it were not organized into mask unit
|
101 |
+
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
|
102 |
+
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
|
103 |
+
Returns:
|
104 |
+
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
|
105 |
+
"""
|
106 |
+
D = len(shape)
|
107 |
+
B, C = x.shape[0], x.shape[-1]
|
108 |
+
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
|
109 |
+
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
|
110 |
+
x = x.view(B, *num_MUs, *mu_shape, C)
|
111 |
+
|
112 |
+
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
|
113 |
+
permute = (
|
114 |
+
[0]
|
115 |
+
+ sum(
|
116 |
+
[list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))],
|
117 |
+
[],
|
118 |
+
)
|
119 |
+
+ [len(x.shape) - 1]
|
120 |
+
)
|
121 |
+
x = x.permute(permute).reshape(B, *shape, C)
|
122 |
+
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.swin.modeling_swin.drop_path
|
127 |
+
def drop_path(
|
128 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
129 |
+
) -> torch.Tensor:
|
130 |
+
"""
|
131 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
132 |
+
|
133 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
134 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
135 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
136 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
137 |
+
argument.
|
138 |
+
"""
|
139 |
+
if drop_prob == 0.0 or not training:
|
140 |
+
return input
|
141 |
+
keep_prob = 1 - drop_prob
|
142 |
+
shape = (input.shape[0],) + (1,) * (
|
143 |
+
input.ndim - 1
|
144 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
145 |
+
random_tensor = keep_prob + torch.rand(
|
146 |
+
shape, dtype=input.dtype, device=input.device
|
147 |
+
)
|
148 |
+
random_tensor.floor_() # binarize
|
149 |
+
output = input.div(keep_prob) * random_tensor
|
150 |
+
return output
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Hiera
|
154 |
+
class HieraDropPath(nn.Module):
|
155 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
156 |
+
|
157 |
+
def __init__(self, drop_prob: float) -> None:
|
158 |
+
super().__init__()
|
159 |
+
self.drop_prob = drop_prob
|
160 |
+
|
161 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
162 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
163 |
+
|
164 |
+
def extra_repr(self) -> str:
|
165 |
+
return "p={}".format(self.drop_prob)
|
166 |
+
|
167 |
+
|
168 |
+
@dataclass
|
169 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->Swinv2
|
170 |
+
class HieraEncoderOutput(ModelOutput):
|
171 |
+
"""
|
172 |
+
Hiera encoder's outputs, with potential hidden states and attentions.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
176 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
177 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
178 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
179 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
180 |
+
|
181 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
182 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
183 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
184 |
+
sequence_length)`.
|
185 |
+
|
186 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
187 |
+
heads.
|
188 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
189 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
190 |
+
shape `(batch_size, hidden_size, height, width)`.
|
191 |
+
|
192 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
193 |
+
include the spatial dimensions.
|
194 |
+
"""
|
195 |
+
|
196 |
+
last_hidden_state: torch.FloatTensor
|
197 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
198 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
199 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
200 |
+
|
201 |
+
|
202 |
+
@dataclass
|
203 |
+
# Copied from transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput with Swin->Swinv2
|
204 |
+
class HieraMaskedImageModelingOutput(ModelOutput):
|
205 |
+
"""
|
206 |
+
Hiera masked image model outputs.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
|
210 |
+
Masked image modeling (MLM) loss.
|
211 |
+
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
212 |
+
Reconstructed pixel values.
|
213 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
214 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
215 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
216 |
+
|
217 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
218 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
219 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
220 |
+
sequence_length)`.
|
221 |
+
|
222 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
223 |
+
heads.
|
224 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
225 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
226 |
+
shape `(batch_size, hidden_size, height, width)`.
|
227 |
+
|
228 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
229 |
+
include the spatial dimensions.
|
230 |
+
"""
|
231 |
+
|
232 |
+
reconstruction: torch.FloatTensor
|
233 |
+
loss: Optional[torch.FloatTensor] = None
|
234 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
235 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
236 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
237 |
+
|
238 |
+
@property
|
239 |
+
def logits(self):
|
240 |
+
warnings.warn(
|
241 |
+
"logits attribute is deprecated and will be removed in version 5 of Transformers."
|
242 |
+
" Please use the reconstruction attribute to retrieve the final output instead.",
|
243 |
+
FutureWarning,
|
244 |
+
)
|
245 |
+
return self.reconstruction
|
246 |
+
|
247 |
+
|
248 |
+
class HieraPretrainedModel(PreTrainedModel):
|
249 |
+
"""
|
250 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
251 |
+
models.
|
252 |
+
"""
|
253 |
+
|
254 |
+
config_class = HieraConfig
|
255 |
+
base_model_prefix = "hiera"
|
256 |
+
main_input_name = "pixel_values"
|
257 |
+
supports_gradient_checkpointing = True
|
258 |
+
|
259 |
+
def _init_weights(self, module):
|
260 |
+
"""Initialize the weights"""
|
261 |
+
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
262 |
+
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
|
263 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
264 |
+
nn.init.constant_(module.bias, val=self.config.initializer_bias)
|
265 |
+
elif isinstance(module, nn.LayerNorm):
|
266 |
+
nn.init.constant_(module.bias, val=self.config.initializer_bias)
|
267 |
+
nn.init.constant_(module.weight, 1.0)
|
268 |
+
|
269 |
+
|
270 |
+
HIERA_START_DOCSTRING = r"""
|
271 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
272 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
273 |
+
behavior.
|
274 |
+
|
275 |
+
Parameters:
|
276 |
+
config ([`HieraConfig`]): Model configuration class with all the parameters of the model.
|
277 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
278 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
279 |
+
"""
|
280 |
+
|
281 |
+
HIERA_INPUTS_DOCSTRING = r"""
|
282 |
+
Args:
|
283 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
284 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
285 |
+
for details.
|
286 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
287 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
288 |
+
|
289 |
+
- 1 indicates the head is **not masked**,
|
290 |
+
- 0 indicates the head is **masked**.
|
291 |
+
|
292 |
+
output_attentions (`bool`, *optional*):
|
293 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
294 |
+
tensors for more detail.
|
295 |
+
output_hidden_states (`bool`, *optional*):
|
296 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
297 |
+
more detail.
|
298 |
+
return_dict (`bool`, *optional*):
|
299 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
300 |
+
"""
|
301 |
+
|
302 |
+
|
303 |
+
class HieraUnroll(nn.Module):
|
304 |
+
"""
|
305 |
+
Reorders the tokens such that patches are contiguous in memory.
|
306 |
+
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
|
307 |
+
[B, (Sy, Sx, H // Sy, W // Sx), C]
|
308 |
+
|
309 |
+
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
|
310 |
+
Not only is this faster, but it also makes it easy to support inputs of arbitrary
|
311 |
+
dimensions in addition to patch-wise sparsity.
|
312 |
+
|
313 |
+
Performing this operation multiple times in sequence puts entire windows as contiguous
|
314 |
+
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
|
315 |
+
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
|
316 |
+
computed easily and efficiently, while also allowing max to be applied sequentially.
|
317 |
+
|
318 |
+
Note: This means that intermediate values of the model are not in HxW order, so they
|
319 |
+
need to be re-rolled if you want to use the intermediate values as a HxW feature map.
|
320 |
+
The last block of the network is fine though, since by then the strides are all consumed.
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(
|
324 |
+
self,
|
325 |
+
config: HieraConfig,
|
326 |
+
):
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
image_size, stride_size = config.image_size, config.stride_size
|
330 |
+
image_size = (
|
331 |
+
image_size
|
332 |
+
if isinstance(image_size, collections.abc.Iterable)
|
333 |
+
else (image_size, image_size)
|
334 |
+
)
|
335 |
+
|
336 |
+
self.size = [i // s for i, s in zip(image_size, stride_size)]
|
337 |
+
self.schedule = [config.q_stride] * (len(config.depths) - 1)
|
338 |
+
|
339 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
340 |
+
"""
|
341 |
+
Input: Flattened patch embeddings [B, N, C]
|
342 |
+
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
|
343 |
+
"""
|
344 |
+
B, _, C = x.shape
|
345 |
+
|
346 |
+
cur_size = self.size
|
347 |
+
x = x.view(*([B] + cur_size + [C]))
|
348 |
+
|
349 |
+
for strides in self.schedule:
|
350 |
+
# Move patches with the given strides to the batch dimension
|
351 |
+
|
352 |
+
# Create a view of the tensor with the patch stride as separate dims
|
353 |
+
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
|
354 |
+
cur_size = [i // s for i, s in zip(cur_size, strides)]
|
355 |
+
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
|
356 |
+
x = x.view(new_shape)
|
357 |
+
|
358 |
+
# Move the patch stride into the batch dimension
|
359 |
+
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
|
360 |
+
L = len(new_shape)
|
361 |
+
permute = (
|
362 |
+
[0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
|
363 |
+
)
|
364 |
+
x = x.permute(permute)
|
365 |
+
|
366 |
+
# Now finally flatten the relevant dims into the batch dimension
|
367 |
+
x = x.flatten(0, len(strides))
|
368 |
+
B *= math.prod(strides)
|
369 |
+
|
370 |
+
x = x.reshape(-1, math.prod(self.size), C)
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class HieraReroll(nn.Module):
|
375 |
+
"""
|
376 |
+
Undos the "unroll" operation so that you can use intermediate features.
|
377 |
+
"""
|
378 |
+
|
379 |
+
def __init__(
|
380 |
+
self,
|
381 |
+
config: HieraConfig,
|
382 |
+
):
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
image_size, stride_size = config.image_size, config.stride_size
|
386 |
+
image_size = (
|
387 |
+
image_size
|
388 |
+
if isinstance(image_size, collections.abc.Iterable)
|
389 |
+
else (image_size, image_size)
|
390 |
+
)
|
391 |
+
|
392 |
+
self.size = [i // s for i, s in zip(image_size, stride_size)]
|
393 |
+
|
394 |
+
unroll_schedule = [config.q_stride] * (len(config.depths) - 1)
|
395 |
+
|
396 |
+
# The first stage has to reverse everything
|
397 |
+
# The next stage has to reverse all but the first unroll, etc.
|
398 |
+
self.schedule = {}
|
399 |
+
size = self.size
|
400 |
+
for i in range(config.depths[-2]):
|
401 |
+
self.schedule[i] = unroll_schedule, size
|
402 |
+
# schedule unchanged if no pooling at a stage end
|
403 |
+
if i + 1 in config.depths[: config.q_pool]:
|
404 |
+
if len(unroll_schedule) > 0:
|
405 |
+
size = [n // s for n, s in zip(size, unroll_schedule[0])]
|
406 |
+
unroll_schedule = unroll_schedule[1:]
|
407 |
+
|
408 |
+
def forward(
|
409 |
+
self, x: torch.Tensor, block_idx: int, mask: Optional[torch.Tensor] = None
|
410 |
+
) -> torch.Tensor:
|
411 |
+
"""
|
412 |
+
Roll the given tensor back up to spatial order assuming it's from the given block.
|
413 |
+
|
414 |
+
If no mask is provided:
|
415 |
+
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
|
416 |
+
If a mask is provided:
|
417 |
+
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
|
418 |
+
"""
|
419 |
+
schedule, size = self.schedule[block_idx]
|
420 |
+
B, N, C = x.shape
|
421 |
+
|
422 |
+
D = len(size)
|
423 |
+
cur_mu_shape = [1] * D
|
424 |
+
|
425 |
+
for strides in schedule:
|
426 |
+
# Extract the current patch from N
|
427 |
+
x = x.view(B, *strides, N // int(math.prod(strides)), *cur_mu_shape, C)
|
428 |
+
|
429 |
+
# Move that patch into the current MU
|
430 |
+
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
|
431 |
+
L = len(x.shape)
|
432 |
+
permute = (
|
433 |
+
[0, 1 + D]
|
434 |
+
+ sum(
|
435 |
+
[list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))],
|
436 |
+
[],
|
437 |
+
)
|
438 |
+
+ [L - 1]
|
439 |
+
)
|
440 |
+
x = x.permute(permute)
|
441 |
+
|
442 |
+
# Reshape to [B, N//(Sy*Sx), *MU, C]
|
443 |
+
for i in range(D):
|
444 |
+
cur_mu_shape[i] *= strides[i]
|
445 |
+
x = x.reshape(B, -1, *cur_mu_shape, C)
|
446 |
+
N = x.shape[1]
|
447 |
+
|
448 |
+
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
|
449 |
+
x = x.view(B, N, *cur_mu_shape, C)
|
450 |
+
|
451 |
+
# If masked, return [B, #MUs, MUy, MUx, C]
|
452 |
+
if mask is not None:
|
453 |
+
return x
|
454 |
+
|
455 |
+
# If not masked, we can return [B, H, W, C]
|
456 |
+
x = undo_windowing(x, size, cur_mu_shape)
|
457 |
+
|
458 |
+
return x
|
459 |
+
|
460 |
+
|
461 |
+
class HieraAttention(nn.Module):
|
462 |
+
"""
|
463 |
+
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
|
464 |
+
|
465 |
+
Note: this assumes the tokens have already been flattened and unrolled into mask units.
|
466 |
+
See `Unroll` for more details.
|
467 |
+
"""
|
468 |
+
|
469 |
+
def __init__(
|
470 |
+
self,
|
471 |
+
config: HieraConfig,
|
472 |
+
dim: int,
|
473 |
+
dim_out: int,
|
474 |
+
num_heads: int,
|
475 |
+
q_stride: int = 1,
|
476 |
+
window_size: int = 0,
|
477 |
+
use_mask_unit_attn: bool = False,
|
478 |
+
):
|
479 |
+
"""
|
480 |
+
Args:
|
481 |
+
- dim, dim_out: The input and output feature dimensions.
|
482 |
+
- heads: The number of attention heads.
|
483 |
+
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
|
484 |
+
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
|
485 |
+
- use_mask_unit_attn: Use Mask Unit or Global Attention.
|
486 |
+
"""
|
487 |
+
super().__init__()
|
488 |
+
|
489 |
+
self.dim = dim
|
490 |
+
self.dim_out = dim_out
|
491 |
+
self.num_heads = num_heads
|
492 |
+
self.q_stride = q_stride
|
493 |
+
|
494 |
+
self.head_dim = dim_out // num_heads
|
495 |
+
self.scale = (self.head_dim) ** -0.5
|
496 |
+
|
497 |
+
self.qkv = nn.Linear(dim, 3 * dim_out)
|
498 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
499 |
+
|
500 |
+
self.window_size = window_size
|
501 |
+
self.use_mask_unit_attn = use_mask_unit_attn
|
502 |
+
|
503 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
504 |
+
"""Input should be of shape [batch, tokens, channels]."""
|
505 |
+
B, N, _ = x.shape
|
506 |
+
num_windows = (
|
507 |
+
(N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
|
508 |
+
)
|
509 |
+
|
510 |
+
qkv = (
|
511 |
+
self.qkv(x)
|
512 |
+
.reshape(B, -1, num_windows, 3, self.num_heads, self.head_dim)
|
513 |
+
.permute(3, 0, 4, 2, 1, 5)
|
514 |
+
)
|
515 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
516 |
+
|
517 |
+
if self.q_stride > 1:
|
518 |
+
# Refer to Unroll to see how this performs a maxpool-Nd
|
519 |
+
q = (
|
520 |
+
q.view(B, self.num_heads, num_windows, self.q_stride, -1, self.head_dim)
|
521 |
+
.max(dim=3)
|
522 |
+
.values
|
523 |
+
)
|
524 |
+
|
525 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
526 |
+
# Note: the original paper did *not* use SDPA, it's a free boost!
|
527 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
528 |
+
else:
|
529 |
+
attn = (q * self.scale) @ k.transpose(-1, -2)
|
530 |
+
attn = attn.softmax(dim=-1)
|
531 |
+
x = attn @ v
|
532 |
+
|
533 |
+
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
|
534 |
+
x = self.proj(x)
|
535 |
+
return x
|
536 |
+
|
537 |
+
|
538 |
+
class HieraMLP(nn.Module):
|
539 |
+
def __init__(self, config: HieraConfig, dim: int):
|
540 |
+
super().__init__()
|
541 |
+
|
542 |
+
self.fc1 = nn.Linear(dim, int(config.mlp_ratio * dim))
|
543 |
+
if isinstance(config.hidden_act, str):
|
544 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
545 |
+
else:
|
546 |
+
self.act_fn = config.hidden_act
|
547 |
+
self.dropout1 = nn.Dropout(config.hidden_dropout_prob)
|
548 |
+
self.fc2 = nn.Linear(int(config.mlp_ratio * dim), dim)
|
549 |
+
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
550 |
+
|
551 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
552 |
+
x = self.fc1(x)
|
553 |
+
x = self.act_fn(x)
|
554 |
+
x = self.dropout1(x)
|
555 |
+
x = self.fc2(x)
|
556 |
+
x = self.dropout2(x)
|
557 |
+
return x
|
558 |
+
|
559 |
+
|
560 |
+
class HieraLayer(nn.Module):
|
561 |
+
def __init__(
|
562 |
+
self,
|
563 |
+
config: HieraConfig,
|
564 |
+
dim: int,
|
565 |
+
dim_out: int,
|
566 |
+
num_heads: int,
|
567 |
+
drop_path_rate: float = 0.0,
|
568 |
+
q_stride: int = 1,
|
569 |
+
window_size: int = 0,
|
570 |
+
use_mask_unit_attn: bool = False,
|
571 |
+
):
|
572 |
+
super().__init__()
|
573 |
+
|
574 |
+
self.dim = dim
|
575 |
+
self.dim_out = dim_out
|
576 |
+
|
577 |
+
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
578 |
+
self.attn = HieraAttention(
|
579 |
+
config=config,
|
580 |
+
dim=dim,
|
581 |
+
dim_out=dim_out,
|
582 |
+
num_heads=num_heads,
|
583 |
+
q_stride=q_stride,
|
584 |
+
window_size=window_size,
|
585 |
+
use_mask_unit_attn=use_mask_unit_attn,
|
586 |
+
)
|
587 |
+
|
588 |
+
self.norm2 = nn.LayerNorm(dim_out, eps=config.layer_norm_eps)
|
589 |
+
self.mlp = HieraMLP(
|
590 |
+
config,
|
591 |
+
dim=dim_out,
|
592 |
+
)
|
593 |
+
|
594 |
+
self.drop_path = (
|
595 |
+
HieraDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
596 |
+
)
|
597 |
+
if dim != dim_out:
|
598 |
+
self.proj = nn.Linear(dim, dim_out)
|
599 |
+
else:
|
600 |
+
self.proj = None
|
601 |
+
|
602 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
603 |
+
# Attention + Q Pooling
|
604 |
+
x_norm = self.norm1(x)
|
605 |
+
|
606 |
+
if self.proj is not None:
|
607 |
+
x = do_pool(self.proj(x_norm), stride=self.attn.q_stride)
|
608 |
+
x = x + self.drop_path(self.attn(x_norm))
|
609 |
+
|
610 |
+
# MLP
|
611 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
612 |
+
|
613 |
+
return x
|
614 |
+
|
615 |
+
|
616 |
+
class HieraStage(nn.Module):
|
617 |
+
def __init__(
|
618 |
+
self,
|
619 |
+
config: HieraConfig,
|
620 |
+
dim: int,
|
621 |
+
depth: int,
|
622 |
+
num_heads: int,
|
623 |
+
window_size: int,
|
624 |
+
has_q_pool: bool = True,
|
625 |
+
drop_path_rate: float = 0.0,
|
626 |
+
use_mask_unit_attention: bool = True,
|
627 |
+
):
|
628 |
+
super().__init__()
|
629 |
+
|
630 |
+
self.blocks = nn.ModuleList(
|
631 |
+
[
|
632 |
+
HieraLayer(
|
633 |
+
config=config,
|
634 |
+
dim=dim // 2 if i == 0 and has_q_pool else dim,
|
635 |
+
dim_out=dim,
|
636 |
+
num_heads=num_heads,
|
637 |
+
drop_path_rate=drop_path_rate,
|
638 |
+
q_stride=(config.flat_q_stride if i == 0 and has_q_pool else 1),
|
639 |
+
window_size=window_size,
|
640 |
+
use_mask_unit_attn=use_mask_unit_attention,
|
641 |
+
)
|
642 |
+
for i in range(depth)
|
643 |
+
]
|
644 |
+
)
|
645 |
+
|
646 |
+
def forward(
|
647 |
+
self,
|
648 |
+
hidden_states: torch.Tensor,
|
649 |
+
) -> torch.Tensor:
|
650 |
+
for _i, block in enumerate(self.blocks):
|
651 |
+
hidden_states = block(hidden_states)
|
652 |
+
|
653 |
+
return hidden_states
|
654 |
+
|
655 |
+
|
656 |
+
class HieraPatchEmbeddings(nn.Module):
|
657 |
+
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""
|
658 |
+
|
659 |
+
def __init__(
|
660 |
+
self,
|
661 |
+
config: HieraConfig,
|
662 |
+
):
|
663 |
+
super().__init__()
|
664 |
+
image_size, patch_size, stride_size, padding_size = (
|
665 |
+
config.image_size,
|
666 |
+
config.patch_size,
|
667 |
+
config.stride_size,
|
668 |
+
config.padding_size,
|
669 |
+
)
|
670 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
671 |
+
image_size = (
|
672 |
+
image_size
|
673 |
+
if isinstance(image_size, collections.abc.Iterable)
|
674 |
+
else (image_size, image_size)
|
675 |
+
)
|
676 |
+
|
677 |
+
self.image_size = image_size
|
678 |
+
self.patch_size = patch_size
|
679 |
+
self.stride_size = stride_size
|
680 |
+
self.padding_size = padding_size
|
681 |
+
self.num_channels = num_channels
|
682 |
+
|
683 |
+
self.num_patches = math.prod(patch_size)
|
684 |
+
|
685 |
+
self.spatial_dims = len(patch_size)
|
686 |
+
|
687 |
+
# Support any number of spatial dimensions
|
688 |
+
self.projection = conv_nd(self.spatial_dims)(
|
689 |
+
num_channels,
|
690 |
+
hidden_size,
|
691 |
+
kernel_size=patch_size,
|
692 |
+
stride=stride_size,
|
693 |
+
padding=padding_size,
|
694 |
+
)
|
695 |
+
|
696 |
+
def forward(
|
697 |
+
self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None
|
698 |
+
) -> Tuple[torch.Tensor, Tuple[int, ...]]:
|
699 |
+
_, num_channels, height, width = pixel_values.shape
|
700 |
+
if num_channels != self.num_channels:
|
701 |
+
raise ValueError(
|
702 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
703 |
+
)
|
704 |
+
|
705 |
+
embeddings = do_masked_conv(pixel_values, self.projection, mask)
|
706 |
+
|
707 |
+
_, _, height, width = embeddings.shape
|
708 |
+
output_dimensions = (height, width)
|
709 |
+
|
710 |
+
embeddings = embeddings.reshape(
|
711 |
+
embeddings.shape[0], embeddings.shape[1], -1
|
712 |
+
).transpose(2, 1)
|
713 |
+
|
714 |
+
return embeddings, output_dimensions
|
715 |
+
|
716 |
+
|
717 |
+
class HieraPositionEmbeddings(nn.Module):
|
718 |
+
def __init__(
|
719 |
+
self,
|
720 |
+
config: HieraConfig,
|
721 |
+
):
|
722 |
+
super().__init__()
|
723 |
+
|
724 |
+
image_size, stride_size = config.image_size, config.stride_size
|
725 |
+
image_size = (
|
726 |
+
image_size
|
727 |
+
if isinstance(image_size, collections.abc.Iterable)
|
728 |
+
else (image_size, image_size)
|
729 |
+
)
|
730 |
+
|
731 |
+
self.tokens_spatial_shape = [i // s for i, s in zip(image_size, stride_size)]
|
732 |
+
num_tokens = math.prod(self.tokens_spatial_shape)
|
733 |
+
self.separate_positional_embeds = config.separate_positional_embeds
|
734 |
+
self.mask_spatial_shape = [
|
735 |
+
i // s for i, s in zip(self.tokens_spatial_shape, config.mask_unit_size)
|
736 |
+
]
|
737 |
+
|
738 |
+
if self.separate_positional_embeds:
|
739 |
+
self.pos_embeddings_spatial = nn.Parameter(
|
740 |
+
torch.zeros(
|
741 |
+
1,
|
742 |
+
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
|
743 |
+
config.embed_dim,
|
744 |
+
)
|
745 |
+
)
|
746 |
+
self.pos_embeddings_temporal = nn.Parameter(
|
747 |
+
torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim)
|
748 |
+
)
|
749 |
+
else:
|
750 |
+
self.pos_embeddings = nn.Parameter(
|
751 |
+
torch.zeros(1, num_tokens, config.embed_dim)
|
752 |
+
)
|
753 |
+
|
754 |
+
def forward(self) -> torch.Tensor:
|
755 |
+
if self.separate_positional_embeds:
|
756 |
+
return self.pos_embeddings_spatial.repeat(
|
757 |
+
1, self.tokens_spatial_shape[0], 1
|
758 |
+
) + torch.repeat_interleave(
|
759 |
+
self.pos_embeddings_temporal,
|
760 |
+
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
|
761 |
+
dim=1,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
return self.pos_embeddings
|
765 |
+
|
766 |
+
|
767 |
+
class HieraEmbeddings(nn.Module):
|
768 |
+
def __init__(self, config: HieraConfig):
|
769 |
+
super().__init__()
|
770 |
+
|
771 |
+
self.patch_embeddings = HieraPatchEmbeddings(config)
|
772 |
+
self.pos_embeddings = HieraPositionEmbeddings(config)
|
773 |
+
|
774 |
+
def forward(
|
775 |
+
self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None
|
776 |
+
) -> Tuple[torch.Tensor, ...]:
|
777 |
+
embeddings, output_dimensions = self.patch_embeddings(
|
778 |
+
pixel_values,
|
779 |
+
mask=(
|
780 |
+
mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape)
|
781 |
+
if mask is not None
|
782 |
+
else None
|
783 |
+
),
|
784 |
+
)
|
785 |
+
embeddings = embeddings + self.pos_embeddings()
|
786 |
+
|
787 |
+
return embeddings, output_dimensions
|
788 |
+
|
789 |
+
|
790 |
+
class HieraEncoder(nn.Module):
|
791 |
+
def __init__(self, config: HieraConfig):
|
792 |
+
super().__init__()
|
793 |
+
|
794 |
+
self.num_layers = len(config.depths)
|
795 |
+
self.config = config
|
796 |
+
|
797 |
+
dpr = [
|
798 |
+
x.item()
|
799 |
+
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))
|
800 |
+
]
|
801 |
+
|
802 |
+
self.layers = nn.ModuleList(
|
803 |
+
[
|
804 |
+
HieraStage(
|
805 |
+
config,
|
806 |
+
dim=int(config.embed_dim * (2**i_layer)),
|
807 |
+
depth=config.depths[i_layer],
|
808 |
+
num_heads=config.num_heads[i_layer],
|
809 |
+
drop_path_rate=dpr[i_layer],
|
810 |
+
has_q_pool=i_layer > 0,
|
811 |
+
window_size=config.flat_mask_unit_size
|
812 |
+
// (config.flat_q_stride**i_layer),
|
813 |
+
use_mask_unit_attention=config.mask_unit_attention[i_layer],
|
814 |
+
)
|
815 |
+
for i_layer in range(self.num_layers)
|
816 |
+
]
|
817 |
+
)
|
818 |
+
|
819 |
+
def forward(
|
820 |
+
self,
|
821 |
+
hidden_states: torch.Tensor,
|
822 |
+
input_dimensions: Tuple[int, int],
|
823 |
+
output_attentions: Optional[bool] = False,
|
824 |
+
output_hidden_states: Optional[bool] = False,
|
825 |
+
return_dict: Optional[bool] = True,
|
826 |
+
) -> Union[Tuple, HieraEncoderOutput]:
|
827 |
+
all_hidden_states = () if output_hidden_states else None
|
828 |
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
829 |
+
all_self_attentions = () if output_attentions else None
|
830 |
+
|
831 |
+
if output_hidden_states:
|
832 |
+
assert isinstance(all_hidden_states, Tuple)
|
833 |
+
assert isinstance(all_reshaped_hidden_states, Tuple)
|
834 |
+
|
835 |
+
batch_size, _, hidden_size = hidden_states.shape
|
836 |
+
# rearrange b (h w) c -> b c h w
|
837 |
+
reshaped_hidden_state = hidden_states.view(
|
838 |
+
batch_size, *input_dimensions, hidden_size
|
839 |
+
)
|
840 |
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
841 |
+
all_hidden_states += (hidden_states,)
|
842 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
843 |
+
|
844 |
+
for _i, layer_module in enumerate(self.layers):
|
845 |
+
|
846 |
+
layer_outputs = layer_module(hidden_states)
|
847 |
+
|
848 |
+
hidden_states = layer_outputs
|
849 |
+
|
850 |
+
|
851 |
+
if not return_dict:
|
852 |
+
return tuple(
|
853 |
+
v
|
854 |
+
for v in [hidden_states, all_hidden_states, all_hidden_states]
|
855 |
+
if v is not None
|
856 |
+
)
|
857 |
+
|
858 |
+
return HieraEncoderOutput(
|
859 |
+
last_hidden_state=hidden_states,
|
860 |
+
hidden_states=all_hidden_states,
|
861 |
+
attentions=all_self_attentions,
|
862 |
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
863 |
+
)
|
864 |
+
|
865 |
+
|
866 |
+
class HieraHead(nn.Module):
|
867 |
+
def __init__(self, config: HieraConfig):
|
868 |
+
super().__init__()
|
869 |
+
|
870 |
+
num_features = int(config.embed_dim * (2 ** (config.num_layers - 1)))
|
871 |
+
|
872 |
+
self.dropout = (
|
873 |
+
nn.Dropout(config.hidden_dropout_prob)
|
874 |
+
if config.hidden_dropout_prob > 0
|
875 |
+
else nn.Identity()
|
876 |
+
)
|
877 |
+
self.projection = nn.Linear(num_features, config.num_labels)
|
878 |
+
|
879 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
880 |
+
x = self.dropout(x)
|
881 |
+
x = self.projection(x)
|
882 |
+
|
883 |
+
return x
|
884 |
+
|
885 |
+
|
886 |
+
class HieraModel(HieraPretrainedModel):
|
887 |
+
def __init__(
|
888 |
+
self,
|
889 |
+
config: HieraConfig,
|
890 |
+
add_pooling_layer=True,
|
891 |
+
):
|
892 |
+
super().__init__(config)
|
893 |
+
|
894 |
+
self.config = config
|
895 |
+
self.num_layers = len(config.depths)
|
896 |
+
self.num_features = int(config.embed_dim * (2 ** (self.num_layers - 1)))
|
897 |
+
|
898 |
+
self.embeddings = HieraEmbeddings(config)
|
899 |
+
self.unroll = HieraUnroll(config)
|
900 |
+
self.reroll = HieraReroll(config)
|
901 |
+
|
902 |
+
self.encoder = HieraEncoder(config)
|
903 |
+
|
904 |
+
self.norm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
905 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
906 |
+
|
907 |
+
# Initialize weights and apply final processing
|
908 |
+
self.post_init()
|
909 |
+
|
910 |
+
def get_input_embeddings(self):
|
911 |
+
return self.embeddings.patch_embeddings
|
912 |
+
|
913 |
+
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
|
914 |
+
@add_code_sample_docstrings(
|
915 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
916 |
+
output_type=BaseModelOutputWithPooling,
|
917 |
+
config_class=_CONFIG_FOR_DOC,
|
918 |
+
modality="vision",
|
919 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
920 |
+
)
|
921 |
+
def forward(
|
922 |
+
self,
|
923 |
+
pixel_values: Optional[torch.BoolTensor] = None,
|
924 |
+
mask: Optional[torch.BoolTensor] = None,
|
925 |
+
# head_mask: Optional[torch.FloatTensor] = None,
|
926 |
+
output_attentions: Optional[bool] = None,
|
927 |
+
output_hidden_states: Optional[bool] = None,
|
928 |
+
return_dict: Optional[bool] = None,
|
929 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
930 |
+
r"""
|
931 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
932 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
933 |
+
"""
|
934 |
+
"""
|
935 |
+
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
|
936 |
+
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
|
937 |
+
"""
|
938 |
+
|
939 |
+
output_attentions = (
|
940 |
+
output_attentions
|
941 |
+
if output_attentions is not None
|
942 |
+
else self.config.output_attentions
|
943 |
+
)
|
944 |
+
output_hidden_states = (
|
945 |
+
output_hidden_states
|
946 |
+
if output_hidden_states is not None
|
947 |
+
else self.config.output_hidden_states
|
948 |
+
)
|
949 |
+
return_dict = (
|
950 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
951 |
+
)
|
952 |
+
|
953 |
+
if pixel_values is None:
|
954 |
+
raise ValueError("You have to specify pixel_values")
|
955 |
+
|
956 |
+
embedding_output, input_dimensions = self.embeddings(pixel_values, mask=mask)
|
957 |
+
unrolled_embedding = self.unroll(embedding_output)
|
958 |
+
|
959 |
+
# Discard masked tokens
|
960 |
+
if mask is not None:
|
961 |
+
unrolled_embedding = unrolled_embedding[
|
962 |
+
mask[..., None].tile(
|
963 |
+
1, self.config.flat_mask_unit_size, unrolled_embedding.shape[2]
|
964 |
+
)
|
965 |
+
].view(unrolled_embedding.shape[0], -1, unrolled_embedding.shape[-1])
|
966 |
+
|
967 |
+
encoder_outputs = self.encoder(unrolled_embedding, input_dimensions)
|
968 |
+
|
969 |
+
sequence_output = encoder_outputs[0].mean(dim=1) # last hidden states
|
970 |
+
sequence_output = self.norm(sequence_output)
|
971 |
+
|
972 |
+
pooled_output = None
|
973 |
+
if self.pooler is not None:
|
974 |
+
pooled_output = self.pooler(sequence_output.transpose(1, 0))
|
975 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
976 |
+
|
977 |
+
if not return_dict:
|
978 |
+
output = (sequence_output, pooled_output) * encoder_outputs[1:]
|
979 |
+
return output
|
980 |
+
|
981 |
+
return BaseModelOutputWithPooling(
|
982 |
+
last_hidden_state=sequence_output,
|
983 |
+
pooler_output=pooled_output,
|
984 |
+
# hidden_states=encoder_outputs.hidden_states
|
985 |
+
)
|
986 |
+
|
987 |
+
|
988 |
+
@add_start_docstrings(
|
989 |
+
"""
|
990 |
+
Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
991 |
+
of the [CLS] token) e.g. for ImageNet.
|
992 |
+
""",
|
993 |
+
HIERA_START_DOCSTRING,
|
994 |
+
)
|
995 |
+
class HieraForImageClassification(HieraPretrainedModel):
|
996 |
+
def __init__(
|
997 |
+
self,
|
998 |
+
config,
|
999 |
+
add_pooling_layer=False,
|
1000 |
+
):
|
1001 |
+
super().__init__(
|
1002 |
+
config,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
self.num_labels = config.num_labels
|
1006 |
+
self.hiera = HieraModel(config, add_pooling_layer=add_pooling_layer)
|
1007 |
+
|
1008 |
+
# Classifier head
|
1009 |
+
self.head = HieraHead(config)
|
1010 |
+
|
1011 |
+
# Initialize weights and apply final processing
|
1012 |
+
self.post_init()
|
1013 |
+
|
1014 |
+
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
|
1015 |
+
@add_code_sample_docstrings(
|
1016 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1017 |
+
output_type=ImageClassifierOutput,
|
1018 |
+
config_class=_CONFIG_FOR_DOC,
|
1019 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1020 |
+
)
|
1021 |
+
def forward(
|
1022 |
+
self,
|
1023 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1024 |
+
# head_mask: Optional[torch.FloatTensor] = None,
|
1025 |
+
labels: Optional[torch.LongTensor] = None,
|
1026 |
+
output_attentions: Optional[bool] = None,
|
1027 |
+
output_hidden_states: Optional[bool] = None,
|
1028 |
+
return_dict: Optional[bool] = None,
|
1029 |
+
) -> Union[Tuple, ImageClassifierOutput]:
|
1030 |
+
r"""
|
1031 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1032 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1033 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1034 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1035 |
+
"""
|
1036 |
+
return_dict = (
|
1037 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
outputs = self.hiera(
|
1041 |
+
pixel_values,
|
1042 |
+
# head_mask=head_mask,
|
1043 |
+
output_attentions=output_attentions,
|
1044 |
+
output_hidden_states=output_hidden_states,
|
1045 |
+
return_dict=return_dict,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
last_hidden_states = outputs[0]
|
1049 |
+
|
1050 |
+
logits = self.head(last_hidden_states)
|
1051 |
+
|
1052 |
+
loss = None
|
1053 |
+
if labels is not None:
|
1054 |
+
if self.config.problem_type is None:
|
1055 |
+
if self.num_labels == 1:
|
1056 |
+
self.config.problem_type = "regression"
|
1057 |
+
elif self.num_labels > 1 and (
|
1058 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1059 |
+
):
|
1060 |
+
self.config.problem_type = "single_label_classification"
|
1061 |
+
else:
|
1062 |
+
self.config.problem_type = "multi_label_classification"
|
1063 |
+
|
1064 |
+
if self.config.problem_type == "regression":
|
1065 |
+
loss_fct = MSELoss()
|
1066 |
+
if self.num_labels == 1:
|
1067 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1068 |
+
else:
|
1069 |
+
loss = loss_fct(logits, labels)
|
1070 |
+
elif self.config.problem_type == "single_label_classification":
|
1071 |
+
loss_fct = CrossEntropyLoss()
|
1072 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1073 |
+
elif self.config.problem_type == "multi_label_classification":
|
1074 |
+
loss_fct = BCEWithLogitsLoss()
|
1075 |
+
loss = loss_fct(logits, labels)
|
1076 |
+
|
1077 |
+
if not return_dict:
|
1078 |
+
output = (logits,) + outputs[2:]
|
1079 |
+
return ((loss,) + output) if loss is not None else output
|
1080 |
+
|
1081 |
+
return ImageClassifierOutput(
|
1082 |
+
loss=loss,
|
1083 |
+
logits=logits,
|
1084 |
+
hidden_states=outputs.hidden_states,
|
1085 |
+
attentions=outputs.attentions,
|
1086 |
+
)
|