--- license: cc-by-sa-4.0 base_model: retrieva-jp/t5-base-long tags: - generated_from_trainer - summarization datasets: - csebuetnlp/xlsum metrics: - rouge model-index: - name: t5-base-xlsum-ja results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: csebuetnlp/xlsum type: xlsum config: japanese split: train args: japanese metrics: - name: Rouge1 type: rouge value: 0.3648008957585529 - name: Rouge2 type: rouge value: 0.16411161798042992 language: - ja library_name: transformers --- # t5-base-xlsum-ja This model is a fine-tuned version of [retrieva-jp/t5-base-long](https://huggingface.co/retrieva-jp/t5-base-long) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6563 - Rouge1: 0.3648 - Rouge2: 0.1641 - Rougel: 0.2965 - Rougelsum: 0.3132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 4.9166 | 1.8 | 100 | 3.4095 | 0.3569 | 0.1509 | 0.2416 | 0.3209 | | 4.1162 | 3.61 | 200 | 3.0980 | 0.3262 | 0.1354 | 0.2557 | 0.2805 | | 3.8578 | 5.41 | 300 | 2.8853 | 0.3428 | 0.1445 | 0.2628 | 0.2881 | | 3.7309 | 7.22 | 400 | 2.7714 | 0.3621 | 0.1615 | 0.2951 | 0.3151 | | 3.6716 | 9.02 | 500 | 2.7042 | 0.3727 | 0.1668 | 0.2982 | 0.3225 | | 3.6393 | 10.82 | 600 | 2.6666 | 0.3676 | 0.1592 | 0.2987 | 0.3206 | | 3.6291 | 12.63 | 700 | 2.6587 | 0.3654 | 0.1576 | 0.2955 | 0.3108 | | 3.6224 | 14.43 | 800 | 2.6563 | 0.3648 | 0.1641 | 0.2965 | 0.3132 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0