p208p2002 commited on
Commit
f66d1d2
1 Parent(s): 3bee572
.gitattributes CHANGED
@@ -41,3 +41,10 @@ pytorch_model-00002-of-00007.bin filter=lfs diff=lfs merge=lfs -text
41
  pytorch_model-00003-of-00007.bin filter=lfs diff=lfs merge=lfs -text
42
  pytorch_model-00004-of-00007.bin filter=lfs diff=lfs merge=lfs -text
43
  tokenizer.model filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
41
  pytorch_model-00003-of-00007.bin filter=lfs diff=lfs merge=lfs -text
42
  pytorch_model-00004-of-00007.bin filter=lfs diff=lfs merge=lfs -text
43
  tokenizer.model filter=lfs diff=lfs merge=lfs -text
44
+ model-00004-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
45
+ model-00005-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
46
+ model-00006-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
47
+ model-00007-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
48
+ model-00001-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
49
+ model-00002-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
50
+ model-00003-of-00007.safetensors filter=lfs diff=lfs merge=lfs -text
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1052386eac358a18add3d0f92521c85ab338979da8eeb08a6499555b857f80d
3
+ size 1827774160
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88d7f69a3940711b87308eb20dd0544df22aff81134fa0d5160d3c859f5d321
3
+ size 1968291888
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:447d41b7c5e7b2558905c98733469aa9e132540c91e13c4cdd7bfc58b60cc650
3
+ size 1927406936
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386305288e2bcc4a26fcffef433c94592d155bf36e365f054f63d3e6b55a1429
3
+ size 1815217640
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c304e2821774d649997d1f5ae5fa12afd4d1dc5fea2bf6e8b829405b81fa7f2
3
+ size 1968291920
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef45bbd33d6d540d3d3523bb169b52b91b9e265176ab7efc6838233bc3b7e95d
3
+ size 1927406960
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eb545c6aa8a839c56a78b80331fcb4fa403341925f79fb6a761e2e847bf1e40
3
+ size 1052805400
model.safetensors.index.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12487168064
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00007.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00007-of-00007.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00007.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00007.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00007.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00007.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00007.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00007.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00007.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00007.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00007.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00007.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00003-of-00007.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00003-of-00007.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00003-of-00007.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00003-of-00007.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00003-of-00007.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00003-of-00007.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00003-of-00007.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00003-of-00007.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00003-of-00007.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00003-of-00007.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00004-of-00007.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00003-of-00007.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00003-of-00007.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00003-of-00007.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00003-of-00007.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00004-of-00007.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00004-of-00007.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00004-of-00007.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00004-of-00007.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00004-of-00007.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00004-of-00007.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00004-of-00007.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00004-of-00007.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00004-of-00007.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00004-of-00007.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00004-of-00007.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00004-of-00007.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00004-of-00007.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00004-of-00007.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00004-of-00007.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00004-of-00007.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00004-of-00007.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00004-of-00007.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00004-of-00007.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00004-of-00007.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00005-of-00007.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00005-of-00007.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00004-of-00007.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00004-of-00007.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00004-of-00007.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00005-of-00007.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00005-of-00007.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00005-of-00007.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00005-of-00007.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00005-of-00007.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00005-of-00007.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00005-of-00007.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00005-of-00007.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00005-of-00007.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00005-of-00007.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00007.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00007.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00007.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00007.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00007.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00005-of-00007.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00005-of-00007.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00005-of-00007.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00005-of-00007.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00005-of-00007.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00005-of-00007.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00005-of-00007.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00005-of-00007.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00005-of-00007.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00005-of-00007.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00006-of-00007.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00006-of-00007.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00006-of-00007.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00006-of-00007.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00006-of-00007.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00006-of-00007.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00006-of-00007.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00006-of-00007.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00006-of-00007.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00006-of-00007.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00006-of-00007.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00006-of-00007.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00006-of-00007.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00006-of-00007.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00006-of-00007.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00006-of-00007.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00006-of-00007.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00006-of-00007.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00006-of-00007.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00006-of-00007.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00006-of-00007.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00007-of-00007.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00006-of-00007.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00006-of-00007.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00006-of-00007.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00006-of-00007.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00007-of-00007.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00007-of-00007.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00007-of-00007.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00007-of-00007.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00007-of-00007.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00007-of-00007.safetensors",
155
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00007.safetensors",
156
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00002-of-00007.safetensors",
157
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00002-of-00007.safetensors",
158
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
159
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00007.safetensors",
160
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00007.safetensors",
161
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00007.safetensors",
162
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
163
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00002-of-00007.safetensors",
164
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00002-of-00007.safetensors",
165
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
166
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00002-of-00007.safetensors",
167
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00002-of-00007.safetensors",
168
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00002-of-00007.safetensors",
169
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
170
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00002-of-00007.safetensors",
171
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00002-of-00007.safetensors",
172
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
173
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00002-of-00007.safetensors",
174
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00002-of-00007.safetensors",
175
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00002-of-00007.safetensors",
176
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
177
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00002-of-00007.safetensors",
178
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00002-of-00007.safetensors",
179
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
180
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00002-of-00007.safetensors",
181
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00002-of-00007.safetensors",
182
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00002-of-00007.safetensors",
183
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
184
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00002-of-00007.safetensors",
185
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00002-of-00007.safetensors",
186
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
187
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00002-of-00007.safetensors",
188
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00002-of-00007.safetensors",
189
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00002-of-00007.safetensors",
190
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
191
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00003-of-00007.safetensors",
192
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00003-of-00007.safetensors",
193
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
194
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00003-of-00007.safetensors",
195
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00003-of-00007.safetensors",
196
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00003-of-00007.safetensors",
197
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
198
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00003-of-00007.safetensors",
199
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00003-of-00007.safetensors",
200
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
201
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00003-of-00007.safetensors",
202
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00003-of-00007.safetensors",
203
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00003-of-00007.safetensors",
204
+ "transformer.output_layer.weight": "model-00007-of-00007.safetensors",
205
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00007.safetensors"
206
+ }
207
+ }
modeling_chatglm.py CHANGED
@@ -634,7 +634,8 @@ class GLMTransformer(torch.nn.Module):
634
  attention_mask,
635
  rotary_pos_emb,
636
  kv_caches[index],
637
- use_cache
 
638
  )
639
  else:
640
  layer_ret = layer(
@@ -697,9 +698,9 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
697
  position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
698
  return position_ids
699
 
700
- def _set_gradient_checkpointing(self, module, value=False):
701
- if isinstance(module, GLMTransformer):
702
- module.gradient_checkpointing = value
703
 
704
 
705
  class Embedding(torch.nn.Module):
@@ -768,6 +769,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
768
  def get_input_embeddings(self):
769
  return self.embedding.word_embeddings
770
 
 
 
 
771
  def get_prompt(self, batch_size, device, dtype=torch.half):
772
  prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
773
  past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
 
634
  attention_mask,
635
  rotary_pos_emb,
636
  kv_caches[index],
637
+ use_cache,
638
+ use_reentrant=False
639
  )
640
  else:
641
  layer_ret = layer(
 
698
  position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
699
  return position_ids
700
 
701
+ def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
702
+ if not self.supports_gradient_checkpointing:
703
+ raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
704
 
705
 
706
  class Embedding(torch.nn.Module):
 
769
  def get_input_embeddings(self):
770
  return self.embedding.word_embeddings
771
 
772
+ def set_input_embeddings(self, value):
773
+ self.embedding.word_embeddings = value
774
+
775
  def get_prompt(self, batch_size, device, dtype=torch.half):
776
  prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
777
  past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
tokenization_chatglm.py CHANGED
@@ -8,6 +8,9 @@ from transformers.utils import logging, PaddingStrategy
8
  from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
 
10
 
 
 
 
11
  class SPTokenizer:
12
  def __init__(self, model_path: str):
13
  # reload tokenizer
@@ -29,7 +32,7 @@ class SPTokenizer:
29
  self.special_tokens[token] = self.n_words
30
  self.index_special_tokens[self.n_words] = token
31
  self.n_words += 1
32
- self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
33
 
34
  def tokenize(self, s: str, encode_special_tokens=False):
35
  if encode_special_tokens:
@@ -89,25 +92,34 @@ class SPTokenizer:
89
 
90
 
91
  class ChatGLMTokenizer(PreTrainedTokenizer):
92
- vocab_files_names = {"vocab_file": "tokenizer.model"}
93
 
 
94
  model_input_names = ["input_ids", "attention_mask", "position_ids"]
95
 
96
- def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
97
- **kwargs):
 
 
 
 
 
 
98
  self.name = "GLMTokenizer"
99
-
100
  self.vocab_file = vocab_file
101
  self.tokenizer = SPTokenizer(vocab_file)
102
  self.special_tokens = {
103
  "<bos>": self.tokenizer.bos_id,
104
  "<eos>": self.tokenizer.eos_id,
 
105
  "<pad>": self.tokenizer.pad_id
106
  }
107
  self.encode_special_tokens = encode_special_tokens
108
- super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
109
- encode_special_tokens=encode_special_tokens,
110
- **kwargs)
 
 
 
111
 
112
  def get_command(self, token):
113
  if token in self.special_tokens:
@@ -117,24 +129,40 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
117
 
118
  @property
119
  def unk_token(self) -> str:
120
- return "<unk>"
121
 
122
  @property
123
  def pad_token(self) -> str:
124
- return "<unk>"
125
 
126
  @property
127
- def pad_token_id(self):
128
- return self.get_command("<pad>")
129
 
130
  @property
131
- def eos_token(self) -> str:
132
- return "</s>"
 
 
 
 
133
 
134
  @property
135
  def eos_token_id(self):
136
  return self.get_command("<eos>")
137
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  @property
139
  def vocab_size(self):
140
  return self.tokenizer.n_words
@@ -212,7 +240,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
212
  return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
213
 
214
  def build_inputs_with_special_tokens(
215
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
216
  ) -> List[int]:
217
  """
218
  Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
@@ -237,12 +265,12 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
237
  return token_ids_0
238
 
239
  def _pad(
240
- self,
241
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
242
- max_length: Optional[int] = None,
243
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
244
- pad_to_multiple_of: Optional[int] = None,
245
- return_attention_mask: Optional[bool] = None,
246
  ) -> dict:
247
  """
248
  Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
 
8
  from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
 
10
 
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
  class SPTokenizer:
15
  def __init__(self, model_path: str):
16
  # reload tokenizer
 
32
  self.special_tokens[token] = self.n_words
33
  self.index_special_tokens[self.n_words] = token
34
  self.n_words += 1
35
+ self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
36
 
37
  def tokenize(self, s: str, encode_special_tokens=False):
38
  if encode_special_tokens:
 
92
 
93
 
94
  class ChatGLMTokenizer(PreTrainedTokenizer):
 
95
 
96
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
97
  model_input_names = ["input_ids", "attention_mask", "position_ids"]
98
 
99
+ def __init__(
100
+ self,
101
+ vocab_file,
102
+ padding_side="left",
103
+ clean_up_tokenization_spaces=False,
104
+ encode_special_tokens=False,
105
+ **kwargs
106
+ ):
107
  self.name = "GLMTokenizer"
 
108
  self.vocab_file = vocab_file
109
  self.tokenizer = SPTokenizer(vocab_file)
110
  self.special_tokens = {
111
  "<bos>": self.tokenizer.bos_id,
112
  "<eos>": self.tokenizer.eos_id,
113
+ "<unk>": self.tokenizer.pad_id,
114
  "<pad>": self.tokenizer.pad_id
115
  }
116
  self.encode_special_tokens = encode_special_tokens
117
+
118
+ super().__init__(
119
+ padding_side=padding_side,
120
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
121
+ **kwargs
122
+ )
123
 
124
  def get_command(self, token):
125
  if token in self.special_tokens:
 
129
 
130
  @property
131
  def unk_token(self) -> str:
132
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
133
 
134
  @property
135
  def pad_token(self) -> str:
136
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
137
 
138
  @property
139
+ def eos_token(self) -> str:
140
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
141
 
142
  @property
143
+ def unk_token_id(self) -> int:
144
+ return self.get_command("<unk>")
145
+
146
+ @property
147
+ def pad_token_id(self) -> int:
148
+ return self.get_command("<pad>")
149
 
150
  @property
151
  def eos_token_id(self):
152
  return self.get_command("<eos>")
153
 
154
+ @unk_token.setter
155
+ def unk_token(self, value):
156
+ logger.warning("Setting unk_token is not supported, use the default one.")
157
+
158
+ @pad_token.setter
159
+ def pad_token(self, value):
160
+ logger.warning("Setting pad_token is not supported, use the default one.")
161
+
162
+ @eos_token.setter
163
+ def eos_token(self, value):
164
+ logger.warning("Setting eos_token is not supported, use the default one.")
165
+
166
  @property
167
  def vocab_size(self):
168
  return self.tokenizer.n_words
 
240
  return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
241
 
242
  def build_inputs_with_special_tokens(
243
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
244
  ) -> List[int]:
245
  """
246
  Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
 
265
  return token_ids_0
266
 
267
  def _pad(
268
+ self,
269
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
270
+ max_length: Optional[int] = None,
271
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
272
+ pad_to_multiple_of: Optional[int] = None,
273
+ return_attention_mask: Optional[bool] = None,
274
  ) -> dict:
275
  """
276
  Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
tokenizer_config.json CHANGED
@@ -31,6 +31,14 @@
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": false
 
 
 
 
 
 
 
 
34
  }
35
  },
36
  "auto_map": {
 
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": false
34
+ },
35
+ "2": {
36
+ "content": "</s>",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
  }
43
  },
44
  "auto_map": {