update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- kr_dialect_speech
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Ko(Gyungsang dialect) - p4b
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: KR Dialect Speech - gyungsang
|
20 |
+
type: kr_dialect_speech
|
21 |
+
config: gyungsang
|
22 |
+
split: validation
|
23 |
+
args: gyungsang
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 15.930018416206263
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Small Ko(Gyungsang dialect) - p4b
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the KR Dialect Speech - gyungsang dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.2017
|
38 |
+
- Wer: 15.9300
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 5e-07
|
58 |
+
- train_batch_size: 96
|
59 |
+
- eval_batch_size: 64
|
60 |
+
- seed: 42
|
61 |
+
- distributed_type: multi-GPU
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: cosine
|
64 |
+
- lr_scheduler_warmup_steps: 500
|
65 |
+
- training_steps: 5000
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.5909 | 0.2 | 1000 | 0.4133 | 211.6022 |
|
72 |
+
| 0.3612 | 0.4 | 2000 | 0.2137 | 16.9429 |
|
73 |
+
| 0.5373 | 0.6 | 3000 | 0.2063 | 15.8379 |
|
74 |
+
| 0.2909 | 0.8 | 4000 | 0.2012 | 15.8379 |
|
75 |
+
| 0.3317 | 1.0 | 5000 | 0.2017 | 15.9300 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.26.0.dev0
|
81 |
+
- Pytorch 1.14.0.dev20221208+cu116
|
82 |
+
- Datasets 2.7.1.dev0
|
83 |
+
- Tokenizers 0.13.2
|