flozi00 commited on
Commit
3694eff
1 Parent(s): 867ff69

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -178
README.md CHANGED
@@ -1,199 +1,119 @@
1
  ---
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
9
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
 
 
 
 
103
  ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - es
9
  library_name: transformers
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - mistral
13
+ - finetune
14
+ - dpo
15
+ - Instruct
16
+ - augmentation
17
+ - german
18
+ - mixtral
19
+ - moe
20
+ datasets:
21
+ - argilla/distilabel-math-preference-dpo
22
  ---
23
 
24
+ ![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/02/Sauerkraut_Instruct_MoE_Instruct.png "SauerkrautLM-Mixtral-8x7B")
25
+ ## VAGO solutions SauerkrautLM-Mixtral-8x7B-Instruct quantized by [Florian Zimmermeister](https://huggingface.co/flozi00) for fp8 usage
26
+ Introducing **SauerkrautLM-Mixtral-8x7B-Instruct** – our Sauerkraut version of the powerful Mixtral-8x7B-Instruct!
27
+ Aligned with **DPO**
28
 
29
+ # Table of Contents
30
+ 1. [Overview of all SauerkrautLM-Mixtral models](#all-sauerkrautlm-mixtral-models)
31
+ 2. [Model Details](#model-details)
32
+ - [Prompt template](#prompt-template)
33
+ - [Training Dataset](#training-dataset)
34
+ - [Data Contamination Test](#data-contamination-test-results)
35
+ 3. [Evaluation](#evaluation)
36
+ 5. [Disclaimer](#disclaimer)
37
+ 6. [Contact](#contact)
38
+ 7. [Collaborations](#collaborations)
39
+ 8. [Acknowledgement](#acknowledgement)
40
 
41
 
42
+ ## All SauerkrautLM-Mixtral Models
43
 
44
+ | Model | HF | GPTQ | GGUF | AWQ |
45
+ |-------|-------|-------|-------|-------|
46
+ | SauerkrautLM-Mixtral-8x7B-Instruct | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GPTQ) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GGUF) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-AWQ) |
47
+ | SauerkrautLM-Mixtral-8x7B | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-GPTQ) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-GGUF) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-Mixtral-8x7B-AWQ) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ ## Model Details
50
+ **SauerkrautLM-Mixtral-8x7B-Instruct**
51
+ - **Model Type:** SauerkrautLM-Mixtral-8x7B-Instruct-v0.1 is a Mixture of Experts (MoE) Model based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
52
+ - **Language(s):** English, German, French, Italian, Spanish
53
+ - **License:** APACHE 2.0
54
+ - **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:golchinfar@vago-solutions.de)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ ### Training Dataset:
57
 
58
+ SauerkrautLM-Mixtral-8x7B-Instruct was trained with mix of German data augmentation and translated data.
59
+ Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset
60
+ as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**
61
+ We found, that only a simple translation of training data can lead to unnatural German phrasings.
62
+ Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
63
 
64
+ ### Data Contamination Test Results
65
 
66
+ Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
67
+ We checked our SauerkrautLM-DPO dataset with a special test [1] on a smaller model for this problem.
68
+ The HuggingFace team used the same methods [2, 3].
69
 
70
+ Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.
71
 
72
+ *The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*
73
 
74
+ | Dataset | ARC | MMLU | TruthfulQA | GSM8K |
75
+ |------------------------------|-------|-------|-------|-------|
76
+ | **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |
77
 
78
+ [1] https://github.com/swj0419/detect-pretrain-code-contamination
79
 
80
+ [2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
81
 
82
+ [3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
83
 
84
+ ### Prompt Template:
85
+ ```
86
+ <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
87
+ ```
88
  ## Evaluation
89
+ ![Harness](https://vago-solutions.de/wp-content/uploads/2023/12/MOE_Instruct.png "SauerkrautLM-Mixtral-8x7B-Instruct Harness")
90
+ *evaluated with lm-evaluation-harness v0.3.0 - mmlu coming soon
91
+
92
+ *All benchmarks were performed with a sliding window of 4096. New Benchmarks with Sliding Window null coming soon
93
+
94
+ **German RAG LLM Evaluation**
95
+ corrected result after FIX: https://github.com/huggingface/lighteval/pull/171
96
+ ```
97
+ | Task |Version|Metric|Value| |Stderr|
98
+ |------------------------------------------------------|------:|------|----:|---|-----:|
99
+ |all | |acc |0.975|± |0.0045|
100
+ |community:german_rag_eval:_average:0 | |acc |0.975|± |0.0045|
101
+ |community:german_rag_eval:choose_context_by_question:0| 0|acc |0.953|± |0.0067|
102
+ |community:german_rag_eval:choose_question_by_context:0| 0|acc |0.998|± |0.0014|
103
+ |community:german_rag_eval:context_question_match:0 | 0|acc |0.975|± |0.0049|
104
+ |community:german_rag_eval:question_answer_match:0 | 0|acc |0.974|± |0.0050|
105
+ ```
106
+
107
+ ## Disclaimer
108
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
109
+ However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
110
+ Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. These models may be employed for commercial purposes, and the Apache 2.0 remains applicable and is included with the model files.
111
+
112
+ ## Contact
113
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:vaziri@vago-solutions.de). We are also grateful for your feedback and suggestions.
114
+
115
+ ## Collaborations
116
+ We are also keenly seeking support and investment for our startup, VAGO solutions, where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
117
+
118
+ ## Acknowledgement
119
+ Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to MistralAI for providing the open source community with their latest technology!