pableitorr
commited on
Commit
•
ef98fa3
1
Parent(s):
1839801
Initial commit
Browse files- .gitattributes +1 -0
- README.md +85 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- results.json +1 -0
- tqc-PandaPickAndPlace-v3.zip +3 -0
- tqc-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- tqc-PandaPickAndPlace-v3/actor.optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/critic.optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/data +128 -0
- tqc-PandaPickAndPlace-v3/ent_coef_optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/policy.pth +3 -0
- tqc-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- tqc-PandaPickAndPlace-v3/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -6.30 +/- 1.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaPickAndPlace-v3 -orga pableitorr -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaPickAndPlace-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaPickAndPlace-v3 -orga pableitorr -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaPickAndPlace-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo tqc --env PandaPickAndPlace-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env PandaPickAndPlace-v3 -f logs/ -orga pableitorr
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 2048),
|
66 |
+
('buffer_size', 1000000),
|
67 |
+
('ent_coef', 'auto'),
|
68 |
+
('gamma', 0.95),
|
69 |
+
('learning_rate', 0.001),
|
70 |
+
('learning_starts', 100),
|
71 |
+
('n_timesteps', 5000000.0),
|
72 |
+
('normalize', True),
|
73 |
+
('policy', 'MultiInputPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'),
|
75 |
+
('replay_buffer_class', 'HerReplayBuffer'),
|
76 |
+
('replay_buffer_kwargs',
|
77 |
+
"dict( goal_selection_strategy='future', n_sampled_goal=4 )"),
|
78 |
+
('tau', 0.05),
|
79 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
80 |
+
```
|
81 |
+
|
82 |
+
# Environment Arguments
|
83 |
+
```python
|
84 |
+
{'render_mode': 'rgb_array'}
|
85 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- PandaPickAndPlace-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 3001333673
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 2048
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.95
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - learning_starts
|
13 |
+
- 100
|
14 |
+
- - n_timesteps
|
15 |
+
- 5000000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
+
- - policy
|
19 |
+
- MultiInputPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[512, 512, 512], n_critics=2)
|
22 |
+
- - replay_buffer_class
|
23 |
+
- HerReplayBuffer
|
24 |
+
- - replay_buffer_kwargs
|
25 |
+
- dict( goal_selection_strategy='future', n_sampled_goal=4 )
|
26 |
+
- - tau
|
27 |
+
- 0.05
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -6.3, "std_reward": 1.5524174696260022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T16:29:13.645229"}
|
tqc-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e13cd95c2383021702a731f73367d2f39b53232da4d2b761cc15251b70463e0a
|
3 |
+
size 24284579
|
tqc-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.2
|
tqc-PandaPickAndPlace-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccf2375533d2e93cba53d9b398ed8d6caa1ce761b79d606a6c546c0767abe98d
|
3 |
+
size 4350332
|
tqc-PandaPickAndPlace-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b356c733a94ea648097b86fdc269cef894b9efdc6d889abb6b85383a59712a
|
3 |
+
size 8869382
|
tqc-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x0000026FCC0B6050>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000026FCC0B3080>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512
|
17 |
+
],
|
18 |
+
"n_critics": 2,
|
19 |
+
"use_sde": false
|
20 |
+
},
|
21 |
+
"num_timesteps": 5000000,
|
22 |
+
"_total_timesteps": 5000000,
|
23 |
+
"_num_timesteps_at_start": 0,
|
24 |
+
"seed": 0,
|
25 |
+
"action_noise": null,
|
26 |
+
"start_time": 1696324610114845491,
|
27 |
+
"learning_rate": {
|
28 |
+
":type:": "<class 'function'>",
|
29 |
+
":serialized:": "gAWV0gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
30 |
+
},
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": {
|
38 |
+
":type:": "<class 'collections.OrderedDict'>",
|
39 |
+
":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA1+h9PUBzvz0s0WE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAa68LPrPLvj3XBFU+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADEWWY9dEHUPXxLHT0L6wM/V4OhPpn+UT9JDRE91+h9PUBzvz0s0WE9lU/GPM1KGzxfvSO9Xt3+PvY4Hz9DvFI/PUb+Pe/MnL8/XSc+lGgOSwFLE4aUaBJ0lFKUdS4=",
|
40 |
+
"achieved_goal": "[[0.06198963 0.09348154 0.05513112]]",
|
41 |
+
"desired_goal": "[[0.13641135 0.09316196 0.20802628]]",
|
42 |
+
"observation": "[[ 0.05623795 0.10364047 0.03840207 0.5153052 0.31545517 0.8202911\n 0.03541306 0.06198963 0.09348154 0.05513112 0.02420787 0.00947828\n -0.03997552 0.49778265 0.6219629 0.82318515 0.12415741 -1.2250041\n 0.16344164]]"
|
43 |
+
},
|
44 |
+
"_episode_num": 452911,
|
45 |
+
"use_sde": false,
|
46 |
+
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.0,
|
48 |
+
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVFw0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCIAAAAAAACMAWyUSwqMAXSUR0D2nKS/z8P4jAppc19zdWNjZXNzlIh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacpuh6By1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacqVVp9JBoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPacrEk9lmRoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacrrLSuyNoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacsR0tAcFoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPactC+rU9ZoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPactogEEDBoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacuOUY8+1oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacu6P2f05oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQPacu+4lQdloCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacvq1NQCVoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacwVkAggZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPacwz+bVjJoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacxVEAo5RoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacx224NI9oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacyh5VwP1oCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPacy/Sb6P9oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPaczR4hUzdoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPaczy3b215oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac0ZiWmgtoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac1Lyz5XVoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac179FWn1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac2iNdZ7poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPac3NyNn5BoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPac35cophFoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQPac4z3Cbc5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac5U79ycVoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac52EVWS5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac6YVGkN5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac7JDArQRoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac7lbhWHVoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac8B3Sro5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac8zIlt0poCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac9ZNnGsFoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac+KYw7DFoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac+wOmR/5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac/SvFFUhoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac/uml67doCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadAU/4ZdhoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadBAJa7mNoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQPadB2sOoYNoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadChIUahpoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadDCbXpW5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadDjQu27ZoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadEKnKnvVoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQPadFKNdZ7poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadF1hb4ahoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadGk7tAs1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadHMWTHKhoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadHyahHsloCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadIT8LropoCYh1fZQoaAZHwDUAAAAAAABoB0sWaAhHQPadJ8AaNuNoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadKstSQ5poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadLXxSYPZoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadMC8M/hVoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadMVdnkDJoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadNCQLeANoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadNoXHim5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadN7T8YQ9oCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadOXaBZp1oCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadOvnmq5toCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadPgJtzjpoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadQPcBU71oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadQ/9bX6JoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadRyVGCqZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadSOdAgPpoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadSlxOtXBoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadS4bYK6ZoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadTbFR51NoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadUKJKraNoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadUv4tYjloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadVVvkzXVoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadWCjIq9ZoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadWZmFrVRoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQPadXPfTCtRoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadX6nKnvVoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadYiFJxvNoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadY+PmxMZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadZasDGLloCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadaFtHhCNoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadanu4PPNoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadbIYsNDtoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadbkqz7dloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadcLCUHIJoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadckPDpC9oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPaddJ+uvEFoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPaddwLF4s5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadeREMLF5oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPade3sAvL5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadfnyJ9ApoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadgEFC9h9oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadglGI9DBoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadhMGOdXloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadhx5hScdoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadiOaCtihoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadi6CSRr9oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadjnSsr/doCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadkIWGh25oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadkzPGACpoCYh1ZS4="
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 4999900,
|
58 |
+
"observation_space": {
|
59 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
60 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
61 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
62 |
+
"_shape": null,
|
63 |
+
"dtype": null,
|
64 |
+
"_np_random": null
|
65 |
+
},
|
66 |
+
"action_space": {
|
67 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
68 |
+
":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
69 |
+
"dtype": "float32",
|
70 |
+
"bounded_below": "[ True True True True]",
|
71 |
+
"bounded_above": "[ True True True True]",
|
72 |
+
"_shape": [
|
73 |
+
4
|
74 |
+
],
|
75 |
+
"low": "[-1. -1. -1. -1.]",
|
76 |
+
"high": "[1. 1. 1. 1.]",
|
77 |
+
"low_repr": "-1.0",
|
78 |
+
"high_repr": "1.0",
|
79 |
+
"_np_random": "Generator(PCG64)"
|
80 |
+
},
|
81 |
+
"n_envs": 1,
|
82 |
+
"buffer_size": 1,
|
83 |
+
"batch_size": 2048,
|
84 |
+
"learning_starts": 100,
|
85 |
+
"tau": 0.05,
|
86 |
+
"gamma": 0.95,
|
87 |
+
"gradient_steps": 1,
|
88 |
+
"optimize_memory_usage": false,
|
89 |
+
"replay_buffer_class": {
|
90 |
+
":type:": "<class 'abc.ABCMeta'>",
|
91 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
92 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
93 |
+
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
94 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
95 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x0000026FCBA36200>",
|
96 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x0000026FCBA36290>",
|
97 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x0000026FCBA36320>",
|
98 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x0000026FCBA363B0>",
|
99 |
+
"add": "<function HerReplayBuffer.add at 0x0000026FCBA36440>",
|
100 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x0000026FCBA364D0>",
|
101 |
+
"sample": "<function HerReplayBuffer.sample at 0x0000026FCBA36560>",
|
102 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x0000026FCBA365F0>",
|
103 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x0000026FCBA36680>",
|
104 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x0000026FCBA36710>",
|
105 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x0000026FCBA367A0>",
|
106 |
+
"__abstractmethods__": "frozenset()",
|
107 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000026FCBA50680>"
|
108 |
+
},
|
109 |
+
"replay_buffer_kwargs": {
|
110 |
+
"goal_selection_strategy": "future",
|
111 |
+
"n_sampled_goal": 4
|
112 |
+
},
|
113 |
+
"train_freq": {
|
114 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
115 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
116 |
+
},
|
117 |
+
"use_sde_at_warmup": false,
|
118 |
+
"target_entropy": -4.0,
|
119 |
+
"ent_coef": "auto",
|
120 |
+
"target_update_interval": 1,
|
121 |
+
"top_quantiles_to_drop_per_net": 2,
|
122 |
+
"lr_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVYwQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjG5DOlxVc2Vyc1xwdG9yclxPbmVEcml2ZVxEb2N1bWVudG9zXFB5dGhvbiBTY3JpcHRzXFNCM0FUQVJJXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDnVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgcKVKUhZR0lFKUaCJoQn2UfZQoaBhoNWgljBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgnfZRoKU5oKk5oK2g9aCxOaC1oL0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"
|
125 |
+
},
|
126 |
+
"batch_norm_stats": [],
|
127 |
+
"batch_norm_stats_target": []
|
128 |
+
}
|
tqc-PandaPickAndPlace-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:425acb2ed7a5caab38e0c8cce6df79a409cf1131c1ad11e43461f01cf194d56f
|
3 |
+
size 1940
|
tqc-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d83009d182dd51f180a947bedf0f2777a84ed8e157cca54ad34d0bbe35182311
|
3 |
+
size 11042200
|
tqc-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:125593ad6553078b17bb210c9dcfe74d666c3e6cfaec35a15dbd0039f6cd8848
|
3 |
+
size 1180
|
tqc-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.22631-SP0 10.0.22631
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.3.2
|
4 |
+
- PyTorch: 2.4.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c61718b50849eb3a5031aa7b23491462e1ef01e302a1986441470e5b5a52e11
|
3 |
+
size 11954710
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a51f8ef4faffaaff073431cad60f38840491bd7ad0f378c067309651295f975
|
3 |
+
size 3133
|