pabloac31 commited on
Commit
90d6887
1 Parent(s): 0a76c51

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.09 +/- 0.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b413d1c6d0410ba0c4ac7a0d5c6069be390501180f172ef6ad38d52ab1e6078
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f96c877e4c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f96c87769f0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676548252245953434,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhSfnPpqz0zzY8go/hSfnPpqz0zzY8go/hSfnPpqz0zzY8go/hSfnPpqz0zzY8go/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADFK7Pq3+ub8cWy6/ZTNXvutNsr+mKak/16eiP3pinT18g2G/yn3IP0jJxj/gWza/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]]",
60
+ "desired_goal": "[[ 0.36586034 -1.4530846 -0.6810777 ]\n [-0.21015699 -1.3930029 1.3215835 ]\n [ 1.2707471 0.07684799 -0.88091254]\n [ 1.5663388 1.5530176 -0.7123394 ]]",
61
+ "observation": "[[0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxZfKvRjnyTwd50E+5jwOvJ3DBL4tFYM90mECPkBhVj0vPB8+LCSxulnNgD0Afp49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09892229 0.02464633 0.18935819]\n [-0.00868151 -0.12965246 0.06400523]\n [ 0.12732628 0.05233884 0.15550302]\n [-0.00135148 0.06289167 0.07738876]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAvOQKR+C77+UhpRSlIwBbJRLMowBdJRHQKd5IPqcEvF1fZQoaAZoCWgPQwh55uWw+w7nv5SGlFKUaBVLMmgWR0CneOHssxwidX2UKGgGaAloD0MIkWRW73C77r+UhpRSlGgVSzJoFkdAp3ij7XQMQXV9lChoBmgJaA9DCJDBilOthei/lIaUUpRoFUsyaBZHQKd4YX+ERJ51fZQoaAZoCWgPQwgQ641aYfrpv5SGlFKUaBVLMmgWR0Cnej7+kxh2dX2UKGgGaAloD0MIx2Xc1ECz/b+UhpRSlGgVSzJoFkdAp3n/71qWT3V9lChoBmgJaA9DCCh+jLlrSfS/lIaUUpRoFUsyaBZHQKd5wgTyrgh1fZQoaAZoCWgPQwgk8l1KXTLtv5SGlFKUaBVLMmgWR0CneX+rlvIfdX2UKGgGaAloD0MI72/QXn086r+UhpRSlGgVSzJoFkdAp3tR7u2JBXV9lChoBmgJaA9DCLDllettM/W/lIaUUpRoFUsyaBZHQKd7EtXgccV1fZQoaAZoCWgPQwjXFp6Xig3tv5SGlFKUaBVLMmgWR0CnetTi0fHQdX2UKGgGaAloD0MI0hqDTghd8b+UhpRSlGgVSzJoFkdAp3qSbpeNUHV9lChoBmgJaA9DCPw1WaMeIum/lIaUUpRoFUsyaBZHQKd8eUKRdQh1fZQoaAZoCWgPQwjNqzqrBbbwv5SGlFKUaBVLMmgWR0CnfDpAt4A0dX2UKGgGaAloD0MI8GskCcJV8L+UhpRSlGgVSzJoFkdAp3v8P+XJHXV9lChoBmgJaA9DCGrecYqOZO6/lIaUUpRoFUsyaBZHQKd7udYGMXJ1fZQoaAZoCWgPQwgtI/Weyunxv5SGlFKUaBVLMmgWR0Cnfjeg13t8dX2UKGgGaAloD0MIfuVBeoqc47+UhpRSlGgVSzJoFkdAp335isny/nV9lChoBmgJaA9DCJTZIJOMHO+/lIaUUpRoFUsyaBZHQKd9vI3irDJ1fZQoaAZoCWgPQwiNKVjjbDrnv5SGlFKUaBVLMmgWR0CnfXroOhCddX2UKGgGaAloD0MIthSQ9j+A9L+UhpRSlGgVSzJoFkdAp4AVsk6cRXV9lChoBmgJaA9DCHTU0XE1suy/lIaUUpRoFUsyaBZHQKd/19Oymhx1fZQoaAZoCWgPQwicGmg+567zv5SGlFKUaBVLMmgWR0Cnf5sJhOQAdX2UKGgGaAloD0MIvVMB9zx/77+UhpRSlGgVSzJoFkdAp39ZujynUHV9lChoBmgJaA9DCDM2dLM/0Pq/lIaUUpRoFUsyaBZHQKeCBSH/Lkl1fZQoaAZoCWgPQwgv205bI0Lwv5SGlFKUaBVLMmgWR0CngcbY02tMdX2UKGgGaAloD0MIUkMbgA0I4b+UhpRSlGgVSzJoFkdAp4GJxFRYR3V9lChoBmgJaA9DCPjDz38PXt+/lIaUUpRoFUsyaBZHQKeBSBeXzDp1fZQoaAZoCWgPQwjjjcwjfzD5v5SGlFKUaBVLMmgWR0Cng/I2fkFOdX2UKGgGaAloD0MIM6MfDafM6L+UhpRSlGgVSzJoFkdAp4O0OLBKtnV9lChoBmgJaA9DCIS4cvbOaPa/lIaUUpRoFUsyaBZHQKeDdwl0HQh1fZQoaAZoCWgPQwg1XrpJDILvv5SGlFKUaBVLMmgWR0CngzV+Zw4sdX2UKGgGaAloD0MIDwnf+xu087+UhpRSlGgVSzJoFkdAp4XV/tpmE3V9lChoBmgJaA9DCJNy9zk+2u6/lIaUUpRoFUsyaBZHQKeFl8vVVgh1fZQoaAZoCWgPQwgouFhRg2nuv5SGlFKUaBVLMmgWR0CnhVt6HCXQdX2UKGgGaAloD0MIXhPSGoMO/7+UhpRSlGgVSzJoFkdAp4UZw2l2vHV9lChoBmgJaA9DCI9Rnnk57OG/lIaUUpRoFUsyaBZHQKeHcovSMLp1fZQoaAZoCWgPQwh3oE55dOP4v5SGlFKUaBVLMmgWR0CnhzN6HCXQdX2UKGgGaAloD0MIHomXp3OF8b+UhpRSlGgVSzJoFkdAp4b1i8WbgHV9lChoBmgJaA9DCNhl+E83kPS/lIaUUpRoFUsyaBZHQKeGsxoIv8J1fZQoaAZoCWgPQwiki00rhcDgv5SGlFKUaBVLMmgWR0CniI0mlZX/dX2UKGgGaAloD0MIejTVk/nH9L+UhpRSlGgVSzJoFkdAp4hN/+bVjXV9lChoBmgJaA9DCE7S/DGtTea/lIaUUpRoFUsyaBZHQKeIEA7Pppx1fZQoaAZoCWgPQwgdqinJOpz0v5SGlFKUaBVLMmgWR0Cnh82i1y/9dX2UKGgGaAloD0MI9GxWfa72+b+UhpRSlGgVSzJoFkdAp4me6iCaqnV9lChoBmgJaA9DCJ2f4jjwauy/lIaUUpRoFUsyaBZHQKeJX+UhV2l1fZQoaAZoCWgPQwgpzHucaULgv5SGlFKUaBVLMmgWR0CniSH7gsK9dX2UKGgGaAloD0MIADj27LlM3b+UhpRSlGgVSzJoFkdAp4jfkHUtqnV9lChoBmgJaA9DCCBCXDl75/q/lIaUUpRoFUsyaBZHQKeKw1E3Kjl1fZQoaAZoCWgPQwgP8nowKf70v5SGlFKUaBVLMmgWR0CnioQ+lj3FdX2UKGgGaAloD0MI0oxF09nJ9L+UhpRSlGgVSzJoFkdAp4pGPV/c33V9lChoBmgJaA9DCI1GPq94Kvq/lIaUUpRoFUsyaBZHQKeKA9pyp711fZQoaAZoCWgPQwiALESHwJHrv5SGlFKUaBVLMmgWR0Cni9SWiUPhdX2UKGgGaAloD0MIxt6LL9rj7b+UhpRSlGgVSzJoFkdAp4uVh5PdmHV9lChoBmgJaA9DCJc3h2u1h+a/lIaUUpRoFUsyaBZHQKeLV4KQaJh1fZQoaAZoCWgPQwgviEhNu1jyv5SGlFKUaBVLMmgWR0CnixUJv5xjdX2UKGgGaAloD0MIza57KxKT8L+UhpRSlGgVSzJoFkdAp4z9D8cdYHV9lChoBmgJaA9DCE0Ttp+MMfO/lIaUUpRoFUsyaBZHQKeMveWOZLJ1fZQoaAZoCWgPQwhE+BdBY6bwv5SGlFKUaBVLMmgWR0CnjH/wqiGndX2UKGgGaAloD0MIPPpfrkWL5b+UhpRSlGgVSzJoFkdAp4w9aIN3GHV9lChoBmgJaA9DCDGx+bg2VOq/lIaUUpRoFUsyaBZHQKeOKpcX3xp1fZQoaAZoCWgPQwjXbOUl/9P8v5SGlFKUaBVLMmgWR0Cnjex7JGONdX2UKGgGaAloD0MICvfKvFVX/L+UhpRSlGgVSzJoFkdAp42uce8wpXV9lChoBmgJaA9DCJV87C5QEva/lIaUUpRoFUsyaBZHQKeNa/7iyY51fZQoaAZoCWgPQwj/zCA+sGPvv5SGlFKUaBVLMmgWR0Cnj0pQLux9dX2UKGgGaAloD0MI2bW93ZJc8L+UhpRSlGgVSzJoFkdAp48LeANG3HV9lChoBmgJaA9DCOscA7LXe/m/lIaUUpRoFUsyaBZHQKeOzZ8KG+N1fZQoaAZoCWgPQwhEUDV6NcAAwJSGlFKUaBVLMmgWR0CnjotHYpUhdX2UKGgGaAloD0MID7QCQ1a38L+UhpRSlGgVSzJoFkdAp5B8vkBCD3V9lChoBmgJaA9DCAMn28AdaP6/lIaUUpRoFUsyaBZHQKeQPaLXL/11fZQoaAZoCWgPQwgv+grSjEXzv5SGlFKUaBVLMmgWR0Cnj/+fh/AkdX2UKGgGaAloD0MIfLq6Y7GN8r+UhpRSlGgVSzJoFkdAp4+9KwpvxnV9lChoBmgJaA9DCIHrihnhTQHAlIaUUpRoFUsyaBZHQKeRmJyhi9Z1fZQoaAZoCWgPQwiHjEephGf7v5SGlFKUaBVLMmgWR0CnkVmQCCBgdX2UKGgGaAloD0MIj26ERUXc8L+UhpRSlGgVSzJoFkdAp5EboQnQY3V9lChoBmgJaA9DCOv/HObLC+O/lIaUUpRoFUsyaBZHQKeQ2WqLjxV1fZQoaAZoCWgPQwggtYmT+930v5SGlFKUaBVLMmgWR0CnkrqoybhFdX2UKGgGaAloD0MI51CGqpjK47+UhpRSlGgVSzJoFkdAp5J7nX/YJ3V9lChoBmgJaA9DCGsQ5nYv9+2/lIaUUpRoFUsyaBZHQKeSPbnHNot1fZQoaAZoCWgPQwh5dvnWhzX0v5SGlFKUaBVLMmgWR0CnkftelbeNdX2UKGgGaAloD0MISOLl6VxR+b+UhpRSlGgVSzJoFkdAp5PKQtBfKXV9lChoBmgJaA9DCIhmnlxTQAXAlIaUUpRoFUsyaBZHQKeTizHjp9t1fZQoaAZoCWgPQwi9NbBVgkXzv5SGlFKUaBVLMmgWR0Cnk00o8ZDRdX2UKGgGaAloD0MIPneC/de5+L+UhpRSlGgVSzJoFkdAp5MKrJbMYHV9lChoBmgJaA9DCF5HHLKBdPy/lIaUUpRoFUsyaBZHQKeU488s+V11fZQoaAZoCWgPQwjI0ocuqC/6v5SGlFKUaBVLMmgWR0CnlKS13MY/dX2UKGgGaAloD0MIdLUV+8sOAsCUhpRSlGgVSzJoFkdAp5Rm0TlDGHV9lChoBmgJaA9DCCr/Wl65XuC/lIaUUpRoFUsyaBZHQKeUJFefI0Z1fZQoaAZoCWgPQwgwvf25aMjsv5SGlFKUaBVLMmgWR0CnlfjOkcjrdX2UKGgGaAloD0MI8Uv9vKmoBMCUhpRSlGgVSzJoFkdAp5W5trKvFHV9lChoBmgJaA9DCEKY273cJ+y/lIaUUpRoFUsyaBZHQKeVe5kK/mF1fZQoaAZoCWgPQwikbfyJysb2v5SGlFKUaBVLMmgWR0CnlTkdvKlpdX2UKGgGaAloD0MI7iWN0Toq67+UhpRSlGgVSzJoFkdAp5cQFkhA4XV9lChoBmgJaA9DCOMcdXRczf+/lIaUUpRoFUsyaBZHQKeW0R0U4711fZQoaAZoCWgPQwh6xyk6kkvzv5SGlFKUaBVLMmgWR0CnlpM5OrQxdX2UKGgGaAloD0MIp658lucBBsCUhpRSlGgVSzJoFkdAp5ZQwTM7l3V9lChoBmgJaA9DCKn26XjMAPq/lIaUUpRoFUsyaBZHQKeYJt+Csfd1fZQoaAZoCWgPQwiDhv4JLlbwv5SGlFKUaBVLMmgWR0Cnl+fP5YYBdX2UKGgGaAloD0MIBKp/EMnwCsCUhpRSlGgVSzJoFkdAp5ep9RaX8nV9lChoBmgJaA9DCK9bBMb6hvy/lIaUUpRoFUsyaBZHQKeXZ36AOKB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73dc22817ff20594f58539e9fa2b30bc79d856c6969a6f4ebcf37180b5946237
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:650af2102e501097ecbc0b1dc15f61c05d9f7bf4ba313550fb9a2fb377529c21
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f96c877e4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f96c87769f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676548252245953434, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhSfnPpqz0zzY8go/hSfnPpqz0zzY8go/hSfnPpqz0zzY8go/hSfnPpqz0zzY8go/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADFK7Pq3+ub8cWy6/ZTNXvutNsr+mKak/16eiP3pinT18g2G/yn3IP0jJxj/gWza/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqFJ+c+mrPTPNjyCj+3dCY8EzSnO0Ne/jqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]\n [0.45147339 0.02584248 0.542768 ]]", "desired_goal": "[[ 0.36586034 -1.4530846 -0.6810777 ]\n [-0.21015699 -1.3930029 1.3215835 ]\n [ 1.2707471 0.07684799 -0.88091254]\n [ 1.5663388 1.5530176 -0.7123394 ]]", "observation": "[[0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]\n [0.45147339 0.02584248 0.542768 0.01015966 0.00510264 0.00194068]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxZfKvRjnyTwd50E+5jwOvJ3DBL4tFYM90mECPkBhVj0vPB8+LCSxulnNgD0Afp49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09892229 0.02464633 0.18935819]\n [-0.00868151 -0.12965246 0.06400523]\n [ 0.12732628 0.05233884 0.15550302]\n [-0.00135148 0.06289167 0.07738876]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAvOQKR+C77+UhpRSlIwBbJRLMowBdJRHQKd5IPqcEvF1fZQoaAZoCWgPQwh55uWw+w7nv5SGlFKUaBVLMmgWR0CneOHssxwidX2UKGgGaAloD0MIkWRW73C77r+UhpRSlGgVSzJoFkdAp3ij7XQMQXV9lChoBmgJaA9DCJDBilOthei/lIaUUpRoFUsyaBZHQKd4YX+ERJ51fZQoaAZoCWgPQwgQ641aYfrpv5SGlFKUaBVLMmgWR0Cnej7+kxh2dX2UKGgGaAloD0MIx2Xc1ECz/b+UhpRSlGgVSzJoFkdAp3n/71qWT3V9lChoBmgJaA9DCCh+jLlrSfS/lIaUUpRoFUsyaBZHQKd5wgTyrgh1fZQoaAZoCWgPQwgk8l1KXTLtv5SGlFKUaBVLMmgWR0CneX+rlvIfdX2UKGgGaAloD0MI72/QXn086r+UhpRSlGgVSzJoFkdAp3tR7u2JBXV9lChoBmgJaA9DCLDllettM/W/lIaUUpRoFUsyaBZHQKd7EtXgccV1fZQoaAZoCWgPQwjXFp6Xig3tv5SGlFKUaBVLMmgWR0CnetTi0fHQdX2UKGgGaAloD0MI0hqDTghd8b+UhpRSlGgVSzJoFkdAp3qSbpeNUHV9lChoBmgJaA9DCPw1WaMeIum/lIaUUpRoFUsyaBZHQKd8eUKRdQh1fZQoaAZoCWgPQwjNqzqrBbbwv5SGlFKUaBVLMmgWR0CnfDpAt4A0dX2UKGgGaAloD0MI8GskCcJV8L+UhpRSlGgVSzJoFkdAp3v8P+XJHXV9lChoBmgJaA9DCGrecYqOZO6/lIaUUpRoFUsyaBZHQKd7udYGMXJ1fZQoaAZoCWgPQwgtI/Weyunxv5SGlFKUaBVLMmgWR0Cnfjeg13t8dX2UKGgGaAloD0MIfuVBeoqc47+UhpRSlGgVSzJoFkdAp335isny/nV9lChoBmgJaA9DCJTZIJOMHO+/lIaUUpRoFUsyaBZHQKd9vI3irDJ1fZQoaAZoCWgPQwiNKVjjbDrnv5SGlFKUaBVLMmgWR0CnfXroOhCddX2UKGgGaAloD0MIthSQ9j+A9L+UhpRSlGgVSzJoFkdAp4AVsk6cRXV9lChoBmgJaA9DCHTU0XE1suy/lIaUUpRoFUsyaBZHQKd/19Oymhx1fZQoaAZoCWgPQwicGmg+567zv5SGlFKUaBVLMmgWR0Cnf5sJhOQAdX2UKGgGaAloD0MIvVMB9zx/77+UhpRSlGgVSzJoFkdAp39ZujynUHV9lChoBmgJaA9DCDM2dLM/0Pq/lIaUUpRoFUsyaBZHQKeCBSH/Lkl1fZQoaAZoCWgPQwgv205bI0Lwv5SGlFKUaBVLMmgWR0CngcbY02tMdX2UKGgGaAloD0MIUkMbgA0I4b+UhpRSlGgVSzJoFkdAp4GJxFRYR3V9lChoBmgJaA9DCPjDz38PXt+/lIaUUpRoFUsyaBZHQKeBSBeXzDp1fZQoaAZoCWgPQwjjjcwjfzD5v5SGlFKUaBVLMmgWR0Cng/I2fkFOdX2UKGgGaAloD0MIM6MfDafM6L+UhpRSlGgVSzJoFkdAp4O0OLBKtnV9lChoBmgJaA9DCIS4cvbOaPa/lIaUUpRoFUsyaBZHQKeDdwl0HQh1fZQoaAZoCWgPQwg1XrpJDILvv5SGlFKUaBVLMmgWR0CngzV+Zw4sdX2UKGgGaAloD0MIDwnf+xu087+UhpRSlGgVSzJoFkdAp4XV/tpmE3V9lChoBmgJaA9DCJNy9zk+2u6/lIaUUpRoFUsyaBZHQKeFl8vVVgh1fZQoaAZoCWgPQwgouFhRg2nuv5SGlFKUaBVLMmgWR0CnhVt6HCXQdX2UKGgGaAloD0MIXhPSGoMO/7+UhpRSlGgVSzJoFkdAp4UZw2l2vHV9lChoBmgJaA9DCI9Rnnk57OG/lIaUUpRoFUsyaBZHQKeHcovSMLp1fZQoaAZoCWgPQwh3oE55dOP4v5SGlFKUaBVLMmgWR0CnhzN6HCXQdX2UKGgGaAloD0MIHomXp3OF8b+UhpRSlGgVSzJoFkdAp4b1i8WbgHV9lChoBmgJaA9DCNhl+E83kPS/lIaUUpRoFUsyaBZHQKeGsxoIv8J1fZQoaAZoCWgPQwiki00rhcDgv5SGlFKUaBVLMmgWR0CniI0mlZX/dX2UKGgGaAloD0MIejTVk/nH9L+UhpRSlGgVSzJoFkdAp4hN/+bVjXV9lChoBmgJaA9DCE7S/DGtTea/lIaUUpRoFUsyaBZHQKeIEA7Pppx1fZQoaAZoCWgPQwgdqinJOpz0v5SGlFKUaBVLMmgWR0Cnh82i1y/9dX2UKGgGaAloD0MI9GxWfa72+b+UhpRSlGgVSzJoFkdAp4me6iCaqnV9lChoBmgJaA9DCJ2f4jjwauy/lIaUUpRoFUsyaBZHQKeJX+UhV2l1fZQoaAZoCWgPQwgpzHucaULgv5SGlFKUaBVLMmgWR0CniSH7gsK9dX2UKGgGaAloD0MIADj27LlM3b+UhpRSlGgVSzJoFkdAp4jfkHUtqnV9lChoBmgJaA9DCCBCXDl75/q/lIaUUpRoFUsyaBZHQKeKw1E3Kjl1fZQoaAZoCWgPQwgP8nowKf70v5SGlFKUaBVLMmgWR0CnioQ+lj3FdX2UKGgGaAloD0MI0oxF09nJ9L+UhpRSlGgVSzJoFkdAp4pGPV/c33V9lChoBmgJaA9DCI1GPq94Kvq/lIaUUpRoFUsyaBZHQKeKA9pyp711fZQoaAZoCWgPQwiALESHwJHrv5SGlFKUaBVLMmgWR0Cni9SWiUPhdX2UKGgGaAloD0MIxt6LL9rj7b+UhpRSlGgVSzJoFkdAp4uVh5PdmHV9lChoBmgJaA9DCJc3h2u1h+a/lIaUUpRoFUsyaBZHQKeLV4KQaJh1fZQoaAZoCWgPQwgviEhNu1jyv5SGlFKUaBVLMmgWR0CnixUJv5xjdX2UKGgGaAloD0MIza57KxKT8L+UhpRSlGgVSzJoFkdAp4z9D8cdYHV9lChoBmgJaA9DCE0Ttp+MMfO/lIaUUpRoFUsyaBZHQKeMveWOZLJ1fZQoaAZoCWgPQwhE+BdBY6bwv5SGlFKUaBVLMmgWR0CnjH/wqiGndX2UKGgGaAloD0MIPPpfrkWL5b+UhpRSlGgVSzJoFkdAp4w9aIN3GHV9lChoBmgJaA9DCDGx+bg2VOq/lIaUUpRoFUsyaBZHQKeOKpcX3xp1fZQoaAZoCWgPQwjXbOUl/9P8v5SGlFKUaBVLMmgWR0Cnjex7JGONdX2UKGgGaAloD0MICvfKvFVX/L+UhpRSlGgVSzJoFkdAp42uce8wpXV9lChoBmgJaA9DCJV87C5QEva/lIaUUpRoFUsyaBZHQKeNa/7iyY51fZQoaAZoCWgPQwj/zCA+sGPvv5SGlFKUaBVLMmgWR0Cnj0pQLux9dX2UKGgGaAloD0MI2bW93ZJc8L+UhpRSlGgVSzJoFkdAp48LeANG3HV9lChoBmgJaA9DCOscA7LXe/m/lIaUUpRoFUsyaBZHQKeOzZ8KG+N1fZQoaAZoCWgPQwhEUDV6NcAAwJSGlFKUaBVLMmgWR0CnjotHYpUhdX2UKGgGaAloD0MID7QCQ1a38L+UhpRSlGgVSzJoFkdAp5B8vkBCD3V9lChoBmgJaA9DCAMn28AdaP6/lIaUUpRoFUsyaBZHQKeQPaLXL/11fZQoaAZoCWgPQwgv+grSjEXzv5SGlFKUaBVLMmgWR0Cnj/+fh/AkdX2UKGgGaAloD0MIfLq6Y7GN8r+UhpRSlGgVSzJoFkdAp4+9KwpvxnV9lChoBmgJaA9DCIHrihnhTQHAlIaUUpRoFUsyaBZHQKeRmJyhi9Z1fZQoaAZoCWgPQwiHjEephGf7v5SGlFKUaBVLMmgWR0CnkVmQCCBgdX2UKGgGaAloD0MIj26ERUXc8L+UhpRSlGgVSzJoFkdAp5EboQnQY3V9lChoBmgJaA9DCOv/HObLC+O/lIaUUpRoFUsyaBZHQKeQ2WqLjxV1fZQoaAZoCWgPQwggtYmT+930v5SGlFKUaBVLMmgWR0CnkrqoybhFdX2UKGgGaAloD0MI51CGqpjK47+UhpRSlGgVSzJoFkdAp5J7nX/YJ3V9lChoBmgJaA9DCGsQ5nYv9+2/lIaUUpRoFUsyaBZHQKeSPbnHNot1fZQoaAZoCWgPQwh5dvnWhzX0v5SGlFKUaBVLMmgWR0CnkftelbeNdX2UKGgGaAloD0MISOLl6VxR+b+UhpRSlGgVSzJoFkdAp5PKQtBfKXV9lChoBmgJaA9DCIhmnlxTQAXAlIaUUpRoFUsyaBZHQKeTizHjp9t1fZQoaAZoCWgPQwi9NbBVgkXzv5SGlFKUaBVLMmgWR0Cnk00o8ZDRdX2UKGgGaAloD0MIPneC/de5+L+UhpRSlGgVSzJoFkdAp5MKrJbMYHV9lChoBmgJaA9DCF5HHLKBdPy/lIaUUpRoFUsyaBZHQKeU488s+V11fZQoaAZoCWgPQwjI0ocuqC/6v5SGlFKUaBVLMmgWR0CnlKS13MY/dX2UKGgGaAloD0MIdLUV+8sOAsCUhpRSlGgVSzJoFkdAp5Rm0TlDGHV9lChoBmgJaA9DCCr/Wl65XuC/lIaUUpRoFUsyaBZHQKeUJFefI0Z1fZQoaAZoCWgPQwgwvf25aMjsv5SGlFKUaBVLMmgWR0CnlfjOkcjrdX2UKGgGaAloD0MI8Uv9vKmoBMCUhpRSlGgVSzJoFkdAp5W5trKvFHV9lChoBmgJaA9DCEKY273cJ+y/lIaUUpRoFUsyaBZHQKeVe5kK/mF1fZQoaAZoCWgPQwikbfyJysb2v5SGlFKUaBVLMmgWR0CnlTkdvKlpdX2UKGgGaAloD0MI7iWN0Toq67+UhpRSlGgVSzJoFkdAp5cQFkhA4XV9lChoBmgJaA9DCOMcdXRczf+/lIaUUpRoFUsyaBZHQKeW0R0U4711fZQoaAZoCWgPQwh6xyk6kkvzv5SGlFKUaBVLMmgWR0CnlpM5OrQxdX2UKGgGaAloD0MIp658lucBBsCUhpRSlGgVSzJoFkdAp5ZQwTM7l3V9lChoBmgJaA9DCKn26XjMAPq/lIaUUpRoFUsyaBZHQKeYJt+Csfd1fZQoaAZoCWgPQwiDhv4JLlbwv5SGlFKUaBVLMmgWR0Cnl+fP5YYBdX2UKGgGaAloD0MIBKp/EMnwCsCUhpRSlGgVSzJoFkdAp5ep9RaX8nV9lChoBmgJaA9DCK9bBMb6hvy/lIaUUpRoFUsyaBZHQKeXZ36AOKB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (331 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.0859967881347985, "std_reward": 0.46444832175309236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T12:44:04.537345"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da22d6457f63094276913f216f48b5b57a4ad340addcb0cd759200344bb4406b
3
+ size 3056