paicup09 commited on
Commit
90978e3
1 Parent(s): 878d053

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -10.96 +/- 5.57
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.37 +/- 0.45
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:780aa534bf5de58a385ce9af015ccbf5bef203c22d037a90d0dc0c58fbfcc062
3
- size 107765
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9c0f4b16427d3707d6871a3c3e41d639111f1f5360a1c06f45b3e86ff841362
3
+ size 108690
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f712b0f0550>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f712b0e9b70>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -40,36 +40,36 @@
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
- "n_envs": 4,
44
- "num_timesteps": 1500000,
45
- "_total_timesteps": 1500000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1677965697100732374,
50
- "learning_rate": 0.009,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/gm6XjU/fO4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArZXIPk9U4L1i88A/rZXIPk9U4L1i88A/rZXIPk9U4L1i88A/rZXIPk9U4L1i88A/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACykuv5sLWL52B3C/I0pZPpm/hz+HrZG/LWANPrBJxD/1GpM/XKVcP9DQ8b6iyOa+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]]",
60
- "desired_goal": "[[-0.68031377 -0.21098177 -0.93761384]\n [ 0.21219687 1.0605346 -1.1381081 ]\n [ 0.1380622 1.5334988 1.1492602 ]\n [ 0.8618982 -0.47229624 -0.45074946]]",
61
- "observation": "[[ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6lIKvcsWED43pBM+RxqVvdDxHj1ORYE+/BWdvRw2+jzLGVI+OWKFvS7GnT0wOpo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
- "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.03377048 0.14071195 0.14418112]\n [-0.07280403 0.03880483 0.25248188]\n [-0.07670209 0.03054338 0.20517652]\n [-0.06512875 0.07703815 0.0753063 ]]",
72
- "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
@@ -77,17 +77,17 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITfilft40JMCUhpRSlIwBbJRLMowBdJRHQLTfjfhuO0d1fZQoaAZoCWgPQwiWl/xP/l4nwJSGlFKUaBVLMmgWR0C030F8w5/9dX2UKGgGaAloD0MIgjtQpzxaJcCUhpRSlGgVSzJoFkdAtN7y00FbFHV9lChoBmgJaA9DCHqlLEMc2xjAlIaUUpRoFUsyaBZHQLTemHgxagV1fZQoaAZoCWgPQwgxmSoYlaQewJSGlFKUaBVLMmgWR0C04CGC7K7qdX2UKGgGaAloD0MIfbJiuDqIJ8CUhpRSlGgVSzJoFkdAtN/U+aBqbnV9lChoBmgJaA9DCLclcsEZLBvAlIaUUpRoFUsyaBZHQLTfhkUKzAx1fZQoaAZoCWgPQwhaKm9HON0RwJSGlFKUaBVLMmgWR0C03ywGfPHDdX2UKGgGaAloD0MIRiI0go0bG8CUhpRSlGgVSzJoFkdAtOC1DohY/3V9lChoBmgJaA9DCGiu00hLbSfAlIaUUpRoFUsyaBZHQLTgaI7Njb11fZQoaAZoCWgPQwgIr13acOwzwJSGlFKUaBVLMmgWR0C04BnWnTAndX2UKGgGaAloD0MIFMyYgjXWJcCUhpRSlGgVSzJoFkdAtN+/cvduYXV9lChoBmgJaA9DCDUNiuYBXBjAlIaUUpRoFUsyaBZHQLThSEVFhG91fZQoaAZoCWgPQwiXcOgtHi4twJSGlFKUaBVLMmgWR0C04PwGwA2idX2UKGgGaAloD0MI3zMSoREEK8CUhpRSlGgVSzJoFkdAtOCtlg+hXnV9lChoBmgJaA9DCNJyoIfaxhvAlIaUUpRoFUsyaBZHQLTgUzv7WNF1fZQoaAZoCWgPQwgFhqxu9awowJSGlFKUaBVLMmgWR0C04d1vqC6IdX2UKGgGaAloD0MIjfFh9rJdLMCUhpRSlGgVSzJoFkdAtOGQ6NlyzXV9lChoBmgJaA9DCMrBbAIMOxfAlIaUUpRoFUsyaBZHQLThQi4J/od1fZQoaAZoCWgPQwigjPFh9rIYwJSGlFKUaBVLMmgWR0C04OfAfuCxdX2UKGgGaAloD0MIOZz51RzwIcCUhpRSlGgVSzJoFkdAtOJtugpSaXV9lChoBmgJaA9DCHuH26FhQR/AlIaUUpRoFUsyaBZHQLTiITTfBN51fZQoaAZoCWgPQwiEukihLKwowJSGlFKUaBVLMmgWR0C04dKHfuTidX2UKGgGaAloD0MIF0flJmphIsCUhpRSlGgVSzJoFkdAtOF4TXarWHV9lChoBmgJaA9DCHl0Iywqui7AlIaUUpRoFUsyaBZHQLTjBg+hXbN1fZQoaAZoCWgPQwgM5xpmaAwYwJSGlFKUaBVLMmgWR0C04rmIO6NEdX2UKGgGaAloD0MIfLWjOEcNHcCUhpRSlGgVSzJoFkdAtOJqy/sVtXV9lChoBmgJaA9DCKiq0EAsexPAlIaUUpRoFUsyaBZHQLTiEGnXNC91fZQoaAZoCWgPQwjYmq285HcswJSGlFKUaBVLMmgWR0C045kUwi7kdX2UKGgGaAloD0MITIxl+iViIcCUhpRSlGgVSzJoFkdAtONMkQf6oHV9lChoBmgJaA9DCDAPmfIhpDbAlIaUUpRoFUsyaBZHQLTi/eSB9Th1fZQoaAZoCWgPQwjiBRGpaXcVwJSGlFKUaBVLMmgWR0C04qN/SYw7dX2UKGgGaAloD0MIObnfoSggHMCUhpRSlGgVSzJoFkdAtOQvE4vN/3V9lChoBmgJaA9DCDlFR3L5nxbAlIaUUpRoFUsyaBZHQLTj4qiGnGd1fZQoaAZoCWgPQwj4pBMJpgonwJSGlFKUaBVLMmgWR0C045RTbWVedX2UKGgGaAloD0MIKuPfZ1x4MsCUhpRSlGgVSzJoFkdAtOM5+8XenHV9lChoBmgJaA9DCEzeADPfQSLAlIaUUpRoFUsyaBZHQLTky8jzI3l1fZQoaAZoCWgPQwh7hQX3A+YgwJSGlFKUaBVLMmgWR0C05H9APd2xdX2UKGgGaAloD0MIt11ortOAMMCUhpRSlGgVSzJoFkdAtOQwixFAmnV9lChoBmgJaA9DCEuTUtDtNTDAlIaUUpRoFUsyaBZHQLTj1iy6cy51fZQoaAZoCWgPQwhrRDAOLjkwwJSGlFKUaBVLMmgWR0C05V7ftQbddX2UKGgGaAloD0MIlwFnKVl+KMCUhpRSlGgVSzJoFkdAtOUSWqtHQXV9lChoBmgJaA9DCGdg5GVNHCPAlIaUUpRoFUsyaBZHQLTkw6PsAvN1fZQoaAZoCWgPQwifO8H+61wmwJSGlFKUaBVLMmgWR0C05GlOXVsldX2UKGgGaAloD0MItTNMbalLMcCUhpRSlGgVSzJoFkdAtOXzMNc4YXV9lChoBmgJaA9DCIVDb/HwlivAlIaUUpRoFUsyaBZHQLTlpq0tyxR1fZQoaAZoCWgPQwglWYejq+QcwJSGlFKUaBVLMmgWR0C05Vf6O5rhdX2UKGgGaAloD0MIuamB5nNeIcCUhpRSlGgVSzJoFkdAtOT9kDp1R3V9lChoBmgJaA9DCHgq4J7ntzXAlIaUUpRoFUsyaBZHQLTmh79Q40d1fZQoaAZoCWgPQwirz9VW7J8XwJSGlFKUaBVLMmgWR0C05js2eg+RdX2UKGgGaAloD0MIgBDJkGO3McCUhpRSlGgVSzJoFkdAtOXsqFyq/HV9lChoBmgJaA9DCG6hKxGofjHAlIaUUpRoFUsyaBZHQLTlkns9jgB1fZQoaAZoCWgPQwirCDcZVR4gwJSGlFKUaBVLMmgWR0C051KPn0TUdX2UKGgGaAloD0MIzc03onvGG8CUhpRSlGgVSzJoFkdAtOcGlZX+2nV9lChoBmgJaA9DCAoRcAhVqiHAlIaUUpRoFUsyaBZHQLTmuD1Gsmx1fZQoaAZoCWgPQwguOe6UDsYgwJSGlFKUaBVLMmgWR0C05l4t6HCXdX2UKGgGaAloD0MI290DdF9OGMCUhpRSlGgVSzJoFkdAtOg7ZvkzXXV9lChoBmgJaA9DCO7O2m0XgivAlIaUUpRoFUsyaBZHQLTn73WnTAp1fZQoaAZoCWgPQwj8/WK2ZAUXwJSGlFKUaBVLMmgWR0C056EcGTs6dX2UKGgGaAloD0MI46lHGtxWN8CUhpRSlGgVSzJoFkdAtOdHgTAWSHV9lChoBmgJaA9DCPs9sU6V3yTAlIaUUpRoFUsyaBZHQLTpLDF6zE91fZQoaAZoCWgPQwgnvW987aEqwJSGlFKUaBVLMmgWR0C06OAmReTndX2UKGgGaAloD0MIBg/TvrmHLsCUhpRSlGgVSzJoFkdAtOiR75VOsXV9lChoBmgJaA9DCJfiqrLvMiPAlIaUUpRoFUsyaBZHQLToOAgPmPp1fZQoaAZoCWgPQwhxdJXurnMmwJSGlFKUaBVLMmgWR0C06iv07KaHdX2UKGgGaAloD0MIPdUhN8O9GcCUhpRSlGgVSzJoFkdAtOnf6yjYZnV9lChoBmgJaA9DCEtYG2Mn3BXAlIaUUpRoFUsyaBZHQLTpkaqjrRl1fZQoaAZoCWgPQwgRb51/uywnwJSGlFKUaBVLMmgWR0C06TfNJOFhdX2UKGgGaAloD0MIMIFbd/OwMMCUhpRSlGgVSzJoFkdAtOs2OzY29HV9lChoBmgJaA9DCNyb3zDRIDfAlIaUUpRoFUsyaBZHQLTq6qfvnbJ1fZQoaAZoCWgPQwjmBG1y+CQqwJSGlFKUaBVLMmgWR0C06pyfDk2hdX2UKGgGaAloD0MIVHJO7KGdHMCUhpRSlGgVSzJoFkdAtOpC2y9mH3V9lChoBmgJaA9DCLX7VYDvZiXAlIaUUpRoFUsyaBZHQLTsN5RTCLx1fZQoaAZoCWgPQwh3TrNAuzMowJSGlFKUaBVLMmgWR0C06+vOUt7KdX2UKGgGaAloD0MIT6+UZYgjJ8CUhpRSlGgVSzJoFkdAtOudhgE2YXV9lChoBmgJaA9DCDhm2ZPAJhfAlIaUUpRoFUsyaBZHQLTrQ5le4Td1fZQoaAZoCWgPQwjRkPEolYgjwJSGlFKUaBVLMmgWR0C07M+3pfQbdX2UKGgGaAloD0MIVwkWhzM/JMCUhpRSlGgVSzJoFkdAtOyDNZ/0/XV9lChoBmgJaA9DCG5pNSTugRrAlIaUUpRoFUsyaBZHQLTsNH1vl2h1fZQoaAZoCWgPQwhEb/HwnisgwJSGlFKUaBVLMmgWR0C069oikftAdX2UKGgGaAloD0MI7G0zFeKJLsCUhpRSlGgVSzJoFkdAtO1qeyzHCHV9lChoBmgJaA9DCLPTD+oi1SfAlIaUUpRoFUsyaBZHQLTtHfZVXFN1fZQoaAZoCWgPQwiJljyelo8YwJSGlFKUaBVLMmgWR0C07M9GmUGFdX2UKGgGaAloD0MIjUephCdsL8CUhpRSlGgVSzJoFkdAtOx1XA/LT3V9lChoBmgJaA9DCDlHHR1XeyjAlIaUUpRoFUsyaBZHQLTuAN5+pfh1fZQoaAZoCWgPQwheu7ThsLwmwJSGlFKUaBVLMmgWR0C07bRaC+URdX2UKGgGaAloD0MICU/o9SdBE8CUhpRSlGgVSzJoFkdAtO1lo9LYgHV9lChoBmgJaA9DCE7udygKBBrAlIaUUpRoFUsyaBZHQLTtC0nw5Np1fZQoaAZoCWgPQwigihu3mG8hwJSGlFKUaBVLMmgWR0C07pwhnrY5dX2UKGgGaAloD0MIYqJBCp7CK8CUhpRSlGgVSzJoFkdAtO5PqHGjsXV9lChoBmgJaA9DCAhagSGrUyDAlIaUUpRoFUsyaBZHQLTuASAYpDx1fZQoaAZoCWgPQwjvAiUFFsAqwJSGlFKUaBVLMmgWR0C07abyDqW1dX2UKGgGaAloD0MIK2ub4nFxE8CUhpRSlGgVSzJoFkdAtO8057w8XHV9lChoBmgJaA9DCJ2huONN+jLAlIaUUpRoFUsyaBZHQLTu6IZqEe11fZQoaAZoCWgPQwhREhJpG18wwJSGlFKUaBVLMmgWR0C07poNd7fIdX2UKGgGaAloD0MIru/DQUJ0EsCUhpRSlGgVSzJoFkdAtO4/pdKNAHV9lChoBmgJaA9DCPWidr8KQBrAlIaUUpRoFUsyaBZHQLTvxCPp6hR1fZQoaAZoCWgPQwiKBil4CrEkwJSGlFKUaBVLMmgWR0C073efVZs9dX2UKGgGaAloD0MIthDkoISpGMCUhpRSlGgVSzJoFkdAtO8o7V8TjHV9lChoBmgJaA9DCB0c7E0MmRzAlIaUUpRoFUsyaBZHQLTuzomXw9d1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 93750,
87
- "n_steps": 4,
88
- "gamma": 0.98,
89
- "gae_lambda": 0.8,
90
- "ent_coef": 0,
91
  "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
  "normalize_advantage": false
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f799f1ec820>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f799f1e0e40>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
+ "n_envs": 6,
44
+ "num_timesteps": 1200000,
45
+ "_total_timesteps": 1200000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1678033007883643481,
50
+ "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAA6NJDv3Ib2j+RlQA/xVVSvxK+iD/Bdh0+9pUPvDuOEL/R4xQ+7r1GvxDimD86Aa0+oUg8PwLU+b7A/LU/Ok5sv/jgij9Gf1S/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwruUaA5LBksGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]]",
60
+ "desired_goal": "[[-0.7649369 1.7039626 0.5022822 ]\n [-0.82162124 1.0683005 0.15377332]\n [-0.00876378 -0.56467026 0.1454003 ]\n [-0.7763356 1.1943989 0.33789998]\n [ 0.7354832 -0.48794562 1.4217758 ]\n [-0.92306864 1.0849905 -0.83006704]]",
61
+ "observation": "[[ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAEBAQEBAZSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAAHd3PW9FDz7txy0+0QcSvUibpD1WuJQ+OhjZvbNYe71ykFc+bZUwvd/9ID2eTa09AxMLvvnrVj0vgJI+lG5OvSSl2z1G6bI9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.06041622 0.1399133 0.16970797]\n [-0.03565199 0.0803743 0.29046887]\n [-0.10600324 -0.06136389 0.21051195]\n [-0.04311125 0.03930461 0.0846207 ]\n [-0.13581471 0.05247113 0.2861342 ]\n [-0.05039842 0.10724857 0.087359 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBcWPMXfNCMCUhpRSlIwBbJRLMowBdJRHQK/N8eU6gdx1fZQoaAZoCWgPQwhpxqLp7KT/v5SGlFKUaBVLMmgWR0CvzX59NN8FdX2UKGgGaAloD0MIZtmTwObcBMCUhpRSlGgVSzJoFkdAr80GK0lZ5nV9lChoBmgJaA9DCFIQPL69CxTAlIaUUpRoFUsyaBZHQK/Miz1K5Cp1fZQoaAZoCWgPQwhqMXiY9m0EwJSGlFKUaBVLMmgWR0Cv0dL+5vtMdX2UKGgGaAloD0MILuQR3EiZEcCUhpRSlGgVSzJoFkdAr9FfA0sOG3V9lChoBmgJaA9DCDsZHCWvTve/lIaUUpRoFUsyaBZHQK/Q6QOFxn51fZQoaAZoCWgPQwjjiSDOw2kKwJSGlFKUaBVLMmgWR0Cv0HX9zfaYdX2UKGgGaAloD0MIXYsWoG2FFcCUhpRSlGgVSzJoFkdAr8/9RNyo43V9lChoBmgJaA9DCIdqSrIORwbAlIaUUpRoFUsyaBZHQK/PgaKk2xZ1fZQoaAZoCWgPQwiDGVOwxvkDwJSGlFKUaBVLMmgWR0Cv1JWrGR3edX2UKGgGaAloD0MIStI1k2+WB8CUhpRSlGgVSzJoFkdAr9Qg2bXpW3V9lChoBmgJaA9DCI7Idyl1Sf2/lIaUUpRoFUsyaBZHQK/TqRcNYr91fZQoaAZoCWgPQwiZDMfzGXALwJSGlFKUaBVLMmgWR0Cv0zQzch1UdX2UKGgGaAloD0MIoGtfQC88BsCUhpRSlGgVSzJoFkdAr9K6LwWnCXV9lChoBmgJaA9DCE8EcR5OYALAlIaUUpRoFUsyaBZHQK/SPaVUuL91fZQoaAZoCWgPQwjOUNzxJv8KwJSGlFKUaBVLMmgWR0Cv1keRoysTdX2UKGgGaAloD0MIj6uRXWmZ/r+UhpRSlGgVSzJoFkdAr9XS2nbZe3V9lChoBmgJaA9DCKLw2To4GA/AlIaUUpRoFUsyaBZHQK/VWzv7WNF1fZQoaAZoCWgPQwii0/NuLIgBwJSGlFKUaBVLMmgWR0Cv1ObC79Q5dX2UKGgGaAloD0MItMnhk07kDsCUhpRSlGgVSzJoFkdAr9Rs0vXbunV9lChoBmgJaA9DCDXvOEVHMgHAlIaUUpRoFUsyaBZHQK/T8OiFj/d1fZQoaAZoCWgPQwgkm6vmOaINwJSGlFKUaBVLMmgWR0Cv1/BbGFSLdX2UKGgGaAloD0MIrz4e+u7W9r+UhpRSlGgVSzJoFkdAr9d7rC3w1HV9lChoBmgJaA9DCM5sV+iD1RTAlIaUUpRoFUsyaBZHQK/XBCkXUH91fZQoaAZoCWgPQwh0et6NBYUNwJSGlFKUaBVLMmgWR0Cv1o/GVAzIdX2UKGgGaAloD0MIQYNNnUclA8CUhpRSlGgVSzJoFkdAr9YVxEORT3V9lChoBmgJaA9DCK2JBb6iOwbAlIaUUpRoFUsyaBZHQK/VmQxN7Bx1fZQoaAZoCWgPQwhjey3ovcETwJSGlFKUaBVLMmgWR0Cv2ccfNiYtdX2UKGgGaAloD0MI/YNIhhzbFsCUhpRSlGgVSzJoFkdAr9lSUs4DLnV9lChoBmgJaA9DCK6dKAmJ9Pu/lIaUUpRoFUsyaBZHQK/Y2uloDgZ1fZQoaAZoCWgPQwjpnnWNlpMXwJSGlFKUaBVLMmgWR0Cv2GZO8CgcdX2UKGgGaAloD0MILcxCO6eZ9b+UhpRSlGgVSzJoFkdAr9ftYMfA9HV9lChoBmgJaA9DCOXuc3y0GAjAlIaUUpRoFUsyaBZHQK/XcKWLP2R1fZQoaAZoCWgPQwg6kPXU6qsPwJSGlFKUaBVLMmgWR0Cv24z4+KTCdX2UKGgGaAloD0MIA7ABEeLK/b+UhpRSlGgVSzJoFkdAr9sYXj2i+XV9lChoBmgJaA9DCFVtN8E3zfu/lIaUUpRoFUsyaBZHQK/aoMWoFV11fZQoaAZoCWgPQwi0IJT3cdQAwJSGlFKUaBVLMmgWR0Cv2ixkmQbNdX2UKGgGaAloD0MInGnC9pMxAMCUhpRSlGgVSzJoFkdAr9myiGnGbXV9lChoBmgJaA9DCADmWrQALfe/lIaUUpRoFUsyaBZHQK/ZNxx1gYx1fZQoaAZoCWgPQwiuug7VlOT5v5SGlFKUaBVLMmgWR0Cv3TXd9Dx9dX2UKGgGaAloD0MIA7Fs5pA0BcCUhpRSlGgVSzJoFkdAr9zA/iYLLXV9lChoBmgJaA9DCGNjXkccUgzAlIaUUpRoFUsyaBZHQK/cSTSsr/d1fZQoaAZoCWgPQwgHz4QmiSUCwJSGlFKUaBVLMmgWR0Cv29SLZSNwdX2UKGgGaAloD0MIFr8prFQQBMCUhpRSlGgVSzJoFkdAr9tanBLwnnV9lChoBmgJaA9DCCXnxB7ahwbAlIaUUpRoFUsyaBZHQK/a3fm9xqB1fZQoaAZoCWgPQwh8f4P26uMHwJSGlFKUaBVLMmgWR0Cv3tUVi4KAdX2UKGgGaAloD0MIMLsnDwuVAsCUhpRSlGgVSzJoFkdAr95gRywOfHV9lChoBmgJaA9DCHzxRXu8ABHAlIaUUpRoFUsyaBZHQK/d6LVnVXp1fZQoaAZoCWgPQwjGMZI9Qs0IwJSGlFKUaBVLMmgWR0Cv3XRl6JIldX2UKGgGaAloD0MIEVX4M7yZ/b+UhpRSlGgVSzJoFkdAr9z6f4AS4HV9lChoBmgJaA9DCFhZ2xSPSwLAlIaUUpRoFUsyaBZHQK/cfe1rqMZ1fZQoaAZoCWgPQwi858ByhKwJwJSGlFKUaBVLMmgWR0Cv4SLs8gZCdX2UKGgGaAloD0MIM1GE1O2s+b+UhpRSlGgVSzJoFkdAr+CvfwZwXXV9lChoBmgJaA9DCIwVNZiGIf+/lIaUUpRoFUsyaBZHQK/gOH5aePJ1fZQoaAZoCWgPQwiuYvGbwgr6v5SGlFKUaBVLMmgWR0Cv38SvLX+VdX2UKGgGaAloD0MI+Z0mM94WCMCUhpRSlGgVSzJoFkdAr99Ldepn6HV9lChoBmgJaA9DCDXSUnk7MhHAlIaUUpRoFUsyaBZHQK/e0AlOXVt1fZQoaAZoCWgPQwhYy52ZYLj6v5SGlFKUaBVLMmgWR0Cv5IbtiQT3dX2UKGgGaAloD0MI8b2/QXt1AMCUhpRSlGgVSzJoFkdAr+QS5mRNh3V9lChoBmgJaA9DCNQLPs3JiwvAlIaUUpRoFUsyaBZHQK/jnA57w8Z1fZQoaAZoCWgPQwjt1FxuMHQIwJSGlFKUaBVLMmgWR0Cv4ygOjIq9dX2UKGgGaAloD0MIVgxXB0Ac9L+UhpRSlGgVSzJoFkdAr+KxTGYKIHV9lChoBmgJaA9DCP+SVKaYw/W/lIaUUpRoFUsyaBZHQK/iN70nPVx1fZQoaAZoCWgPQwh0fLQ4Y7gJwJSGlFKUaBVLMmgWR0Cv52AM2FWXdX2UKGgGaAloD0MIg4WTNH/MA8CUhpRSlGgVSzJoFkdAr+bsUdq+J3V9lChoBmgJaA9DCHOh8q/lVfW/lIaUUpRoFUsyaBZHQK/mdXoTwlV1fZQoaAZoCWgPQwgaMh6lEt4AwJSGlFKUaBVLMmgWR0Cv5gHYYixFdX2UKGgGaAloD0MIpfRMLzE2FMCUhpRSlGgVSzJoFkdAr+WJbQkX13V9lChoBmgJaA9DCJYhjnVx2wnAlIaUUpRoFUsyaBZHQK/lDo6jnFJ1fZQoaAZoCWgPQwjMRBFSt1MFwJSGlFKUaBVLMmgWR0Cv6kKdxyXEdX2UKGgGaAloD0MIfA3BcRn3AMCUhpRSlGgVSzJoFkdAr+nOI/JNkHV9lChoBmgJaA9DCAEydOygcg3AlIaUUpRoFUsyaBZHQK/pVsUIsy11fZQoaAZoCWgPQwjEQxg/jbsOwJSGlFKUaBVLMmgWR0Cv6OJKaodddX2UKGgGaAloD0MI3Zcz2xWaC8CUhpRSlGgVSzJoFkdAr+hoQ176YXV9lChoBmgJaA9DCFbw2xDjtfS/lIaUUpRoFUsyaBZHQK/n7A+IM0B1fZQoaAZoCWgPQwhJaTaPw6ALwJSGlFKUaBVLMmgWR0Cv6/guqWC3dX2UKGgGaAloD0MIvFtZorMMDMCUhpRSlGgVSzJoFkdAr+uDQ7cO9XV9lChoBmgJaA9DCDGXVG03oQbAlIaUUpRoFUsyaBZHQK/rC+dsi0R1fZQoaAZoCWgPQwic4QZ8fpgQwJSGlFKUaBVLMmgWR0Cv6pdhiLEUdX2UKGgGaAloD0MImfG20mvTAsCUhpRSlGgVSzJoFkdAr+odOj7AL3V9lChoBmgJaA9DCJUO1v85rAXAlIaUUpRoFUsyaBZHQK/poJx//ed1fZQoaAZoCWgPQwh4CyQofmwHwJSGlFKUaBVLMmgWR0Cv7aee4Cp4dX2UKGgGaAloD0MI7zzxnC0g+b+UhpRSlGgVSzJoFkdAr+0zDfm9x3V9lChoBmgJaA9DCP7Soj7J/QLAlIaUUpRoFUsyaBZHQK/su1XNke91fZQoaAZoCWgPQwj19XzNcpn7v5SGlFKUaBVLMmgWR0Cv7EaM72csdX2UKGgGaAloD0MIAmGnWDVI+b+UhpRSlGgVSzJoFkdAr+vMcGTs6nV9lChoBmgJaA9DCIBlpUkpiADAlIaUUpRoFUsyaBZHQK/rUCg9Net1fZQoaAZoCWgPQwjII7iRsuUFwJSGlFKUaBVLMmgWR0Cv71XX7LuAdX2UKGgGaAloD0MI1UDzOXd7BMCUhpRSlGgVSzJoFkdAr+7hXwLE1nV9lChoBmgJaA9DCEW8df7t8v+/lIaUUpRoFUsyaBZHQK/uad7v5QB1fZQoaAZoCWgPQwium1JeK0ECwJSGlFKUaBVLMmgWR0Cv7fUa6z3RdX2UKGgGaAloD0MIUvLqHAPy/7+UhpRSlGgVSzJoFkdAr+17IV/MGHV9lChoBmgJaA9DCMh4lEp4ggrAlIaUUpRoFUsyaBZHQK/s/qxC6Yp1fZQoaAZoCWgPQwiqmiDqPgABwJSGlFKUaBVLMmgWR0Cv8QZPdl/ZdX2UKGgGaAloD0MIZf7RN2ka/b+UhpRSlGgVSzJoFkdAr/CRiExqPHV9lChoBmgJaA9DCD83NGWnXwTAlIaUUpRoFUsyaBZHQK/wGdPLxI91fZQoaAZoCWgPQwhMqrab4Jv9v5SGlFKUaBVLMmgWR0Cv76TmGM4tdX2UKGgGaAloD0MIXHUdqilJ/r+UhpRSlGgVSzJoFkdAr+8rmwJPZnV9lChoBmgJaA9DCPhvXpz4avq/lIaUUpRoFUsyaBZHQK/ur0Cih391ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 40000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
  "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
  "normalize_advantage": false
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60b4bcbc41a1fa2ad639115f56d0592b238f8356a381eefe0e04847fc79401a0
3
  size 44606
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fcb9935a7a1d53638f6f846777d2e80a1bbb91d035acb3b7a31f26e47bec1bb
3
  size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c2f267f4177cbbe2c45bc756f764d40d2ba365a492bc3d230a95b9fa899b14a
3
  size 45886
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3656fa72dbdc94cd94cb7907ca4a8f236cfbbea0ce590b9ea4cdaa75e121c5
3
  size 45886
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f712b0f0550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f712b0e9b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677965697100732374, "learning_rate": 0.009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/gm6XjU/fO4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArZXIPk9U4L1i88A/rZXIPk9U4L1i88A/rZXIPk9U4L1i88A/rZXIPk9U4L1i88A/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACykuv5sLWL52B3C/I0pZPpm/hz+HrZG/LWANPrBJxD/1GpM/XKVcP9DQ8b6iyOa+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2tlcg+T1TgvWLzwD/FQs48U7Xyu7lWcD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]\n [ 0.39176694 -0.10953581 1.5074275 ]]", "desired_goal": "[[-0.68031377 -0.21098177 -0.93761384]\n [ 0.21219687 1.0605346 -1.1381081 ]\n [ 0.1380622 1.5334988 1.1492602 ]\n [ 0.8618982 -0.47229624 -0.45074946]]", "observation": "[[ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]\n [ 0.39176694 -0.10953581 1.5074275 0.02517832 -0.00740687 0.05867646]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6lIKvcsWED43pBM+RxqVvdDxHj1ORYE+/BWdvRw2+jzLGVI+OWKFvS7GnT0wOpo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03377048 0.14071195 0.14418112]\n [-0.07280403 0.03880483 0.25248188]\n [-0.07670209 0.03054338 0.20517652]\n [-0.06512875 0.07703815 0.0753063 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITfilft40JMCUhpRSlIwBbJRLMowBdJRHQLTfjfhuO0d1fZQoaAZoCWgPQwiWl/xP/l4nwJSGlFKUaBVLMmgWR0C030F8w5/9dX2UKGgGaAloD0MIgjtQpzxaJcCUhpRSlGgVSzJoFkdAtN7y00FbFHV9lChoBmgJaA9DCHqlLEMc2xjAlIaUUpRoFUsyaBZHQLTemHgxagV1fZQoaAZoCWgPQwgxmSoYlaQewJSGlFKUaBVLMmgWR0C04CGC7K7qdX2UKGgGaAloD0MIfbJiuDqIJ8CUhpRSlGgVSzJoFkdAtN/U+aBqbnV9lChoBmgJaA9DCLclcsEZLBvAlIaUUpRoFUsyaBZHQLTfhkUKzAx1fZQoaAZoCWgPQwhaKm9HON0RwJSGlFKUaBVLMmgWR0C03ywGfPHDdX2UKGgGaAloD0MIRiI0go0bG8CUhpRSlGgVSzJoFkdAtOC1DohY/3V9lChoBmgJaA9DCGiu00hLbSfAlIaUUpRoFUsyaBZHQLTgaI7Njb11fZQoaAZoCWgPQwgIr13acOwzwJSGlFKUaBVLMmgWR0C04BnWnTAndX2UKGgGaAloD0MIFMyYgjXWJcCUhpRSlGgVSzJoFkdAtN+/cvduYXV9lChoBmgJaA9DCDUNiuYBXBjAlIaUUpRoFUsyaBZHQLThSEVFhG91fZQoaAZoCWgPQwiXcOgtHi4twJSGlFKUaBVLMmgWR0C04PwGwA2idX2UKGgGaAloD0MI3zMSoREEK8CUhpRSlGgVSzJoFkdAtOCtlg+hXnV9lChoBmgJaA9DCNJyoIfaxhvAlIaUUpRoFUsyaBZHQLTgUzv7WNF1fZQoaAZoCWgPQwgFhqxu9awowJSGlFKUaBVLMmgWR0C04d1vqC6IdX2UKGgGaAloD0MIjfFh9rJdLMCUhpRSlGgVSzJoFkdAtOGQ6NlyzXV9lChoBmgJaA9DCMrBbAIMOxfAlIaUUpRoFUsyaBZHQLThQi4J/od1fZQoaAZoCWgPQwigjPFh9rIYwJSGlFKUaBVLMmgWR0C04OfAfuCxdX2UKGgGaAloD0MIOZz51RzwIcCUhpRSlGgVSzJoFkdAtOJtugpSaXV9lChoBmgJaA9DCHuH26FhQR/AlIaUUpRoFUsyaBZHQLTiITTfBN51fZQoaAZoCWgPQwiEukihLKwowJSGlFKUaBVLMmgWR0C04dKHfuTidX2UKGgGaAloD0MIF0flJmphIsCUhpRSlGgVSzJoFkdAtOF4TXarWHV9lChoBmgJaA9DCHl0Iywqui7AlIaUUpRoFUsyaBZHQLTjBg+hXbN1fZQoaAZoCWgPQwgM5xpmaAwYwJSGlFKUaBVLMmgWR0C04rmIO6NEdX2UKGgGaAloD0MIfLWjOEcNHcCUhpRSlGgVSzJoFkdAtOJqy/sVtXV9lChoBmgJaA9DCKiq0EAsexPAlIaUUpRoFUsyaBZHQLTiEGnXNC91fZQoaAZoCWgPQwjYmq285HcswJSGlFKUaBVLMmgWR0C045kUwi7kdX2UKGgGaAloD0MITIxl+iViIcCUhpRSlGgVSzJoFkdAtONMkQf6oHV9lChoBmgJaA9DCDAPmfIhpDbAlIaUUpRoFUsyaBZHQLTi/eSB9Th1fZQoaAZoCWgPQwjiBRGpaXcVwJSGlFKUaBVLMmgWR0C04qN/SYw7dX2UKGgGaAloD0MIObnfoSggHMCUhpRSlGgVSzJoFkdAtOQvE4vN/3V9lChoBmgJaA9DCDlFR3L5nxbAlIaUUpRoFUsyaBZHQLTj4qiGnGd1fZQoaAZoCWgPQwj4pBMJpgonwJSGlFKUaBVLMmgWR0C045RTbWVedX2UKGgGaAloD0MIKuPfZ1x4MsCUhpRSlGgVSzJoFkdAtOM5+8XenHV9lChoBmgJaA9DCEzeADPfQSLAlIaUUpRoFUsyaBZHQLTky8jzI3l1fZQoaAZoCWgPQwh7hQX3A+YgwJSGlFKUaBVLMmgWR0C05H9APd2xdX2UKGgGaAloD0MIt11ortOAMMCUhpRSlGgVSzJoFkdAtOQwixFAmnV9lChoBmgJaA9DCEuTUtDtNTDAlIaUUpRoFUsyaBZHQLTj1iy6cy51fZQoaAZoCWgPQwhrRDAOLjkwwJSGlFKUaBVLMmgWR0C05V7ftQbddX2UKGgGaAloD0MIlwFnKVl+KMCUhpRSlGgVSzJoFkdAtOUSWqtHQXV9lChoBmgJaA9DCGdg5GVNHCPAlIaUUpRoFUsyaBZHQLTkw6PsAvN1fZQoaAZoCWgPQwifO8H+61wmwJSGlFKUaBVLMmgWR0C05GlOXVsldX2UKGgGaAloD0MItTNMbalLMcCUhpRSlGgVSzJoFkdAtOXzMNc4YXV9lChoBmgJaA9DCIVDb/HwlivAlIaUUpRoFUsyaBZHQLTlpq0tyxR1fZQoaAZoCWgPQwglWYejq+QcwJSGlFKUaBVLMmgWR0C05Vf6O5rhdX2UKGgGaAloD0MIuamB5nNeIcCUhpRSlGgVSzJoFkdAtOT9kDp1R3V9lChoBmgJaA9DCHgq4J7ntzXAlIaUUpRoFUsyaBZHQLTmh79Q40d1fZQoaAZoCWgPQwirz9VW7J8XwJSGlFKUaBVLMmgWR0C05js2eg+RdX2UKGgGaAloD0MIgBDJkGO3McCUhpRSlGgVSzJoFkdAtOXsqFyq/HV9lChoBmgJaA9DCG6hKxGofjHAlIaUUpRoFUsyaBZHQLTlkns9jgB1fZQoaAZoCWgPQwirCDcZVR4gwJSGlFKUaBVLMmgWR0C051KPn0TUdX2UKGgGaAloD0MIzc03onvGG8CUhpRSlGgVSzJoFkdAtOcGlZX+2nV9lChoBmgJaA9DCAoRcAhVqiHAlIaUUpRoFUsyaBZHQLTmuD1Gsmx1fZQoaAZoCWgPQwguOe6UDsYgwJSGlFKUaBVLMmgWR0C05l4t6HCXdX2UKGgGaAloD0MI290DdF9OGMCUhpRSlGgVSzJoFkdAtOg7ZvkzXXV9lChoBmgJaA9DCO7O2m0XgivAlIaUUpRoFUsyaBZHQLTn73WnTAp1fZQoaAZoCWgPQwj8/WK2ZAUXwJSGlFKUaBVLMmgWR0C056EcGTs6dX2UKGgGaAloD0MI46lHGtxWN8CUhpRSlGgVSzJoFkdAtOdHgTAWSHV9lChoBmgJaA9DCPs9sU6V3yTAlIaUUpRoFUsyaBZHQLTpLDF6zE91fZQoaAZoCWgPQwgnvW987aEqwJSGlFKUaBVLMmgWR0C06OAmReTndX2UKGgGaAloD0MIBg/TvrmHLsCUhpRSlGgVSzJoFkdAtOiR75VOsXV9lChoBmgJaA9DCJfiqrLvMiPAlIaUUpRoFUsyaBZHQLToOAgPmPp1fZQoaAZoCWgPQwhxdJXurnMmwJSGlFKUaBVLMmgWR0C06iv07KaHdX2UKGgGaAloD0MIPdUhN8O9GcCUhpRSlGgVSzJoFkdAtOnf6yjYZnV9lChoBmgJaA9DCEtYG2Mn3BXAlIaUUpRoFUsyaBZHQLTpkaqjrRl1fZQoaAZoCWgPQwgRb51/uywnwJSGlFKUaBVLMmgWR0C06TfNJOFhdX2UKGgGaAloD0MIMIFbd/OwMMCUhpRSlGgVSzJoFkdAtOs2OzY29HV9lChoBmgJaA9DCNyb3zDRIDfAlIaUUpRoFUsyaBZHQLTq6qfvnbJ1fZQoaAZoCWgPQwjmBG1y+CQqwJSGlFKUaBVLMmgWR0C06pyfDk2hdX2UKGgGaAloD0MIVHJO7KGdHMCUhpRSlGgVSzJoFkdAtOpC2y9mH3V9lChoBmgJaA9DCLX7VYDvZiXAlIaUUpRoFUsyaBZHQLTsN5RTCLx1fZQoaAZoCWgPQwh3TrNAuzMowJSGlFKUaBVLMmgWR0C06+vOUt7KdX2UKGgGaAloD0MIT6+UZYgjJ8CUhpRSlGgVSzJoFkdAtOudhgE2YXV9lChoBmgJaA9DCDhm2ZPAJhfAlIaUUpRoFUsyaBZHQLTrQ5le4Td1fZQoaAZoCWgPQwjRkPEolYgjwJSGlFKUaBVLMmgWR0C07M+3pfQbdX2UKGgGaAloD0MIVwkWhzM/JMCUhpRSlGgVSzJoFkdAtOyDNZ/0/XV9lChoBmgJaA9DCG5pNSTugRrAlIaUUpRoFUsyaBZHQLTsNH1vl2h1fZQoaAZoCWgPQwhEb/HwnisgwJSGlFKUaBVLMmgWR0C069oikftAdX2UKGgGaAloD0MI7G0zFeKJLsCUhpRSlGgVSzJoFkdAtO1qeyzHCHV9lChoBmgJaA9DCLPTD+oi1SfAlIaUUpRoFUsyaBZHQLTtHfZVXFN1fZQoaAZoCWgPQwiJljyelo8YwJSGlFKUaBVLMmgWR0C07M9GmUGFdX2UKGgGaAloD0MIjUephCdsL8CUhpRSlGgVSzJoFkdAtOx1XA/LT3V9lChoBmgJaA9DCDlHHR1XeyjAlIaUUpRoFUsyaBZHQLTuAN5+pfh1fZQoaAZoCWgPQwheu7ThsLwmwJSGlFKUaBVLMmgWR0C07bRaC+URdX2UKGgGaAloD0MICU/o9SdBE8CUhpRSlGgVSzJoFkdAtO1lo9LYgHV9lChoBmgJaA9DCE7udygKBBrAlIaUUpRoFUsyaBZHQLTtC0nw5Np1fZQoaAZoCWgPQwigihu3mG8hwJSGlFKUaBVLMmgWR0C07pwhnrY5dX2UKGgGaAloD0MIYqJBCp7CK8CUhpRSlGgVSzJoFkdAtO5PqHGjsXV9lChoBmgJaA9DCAhagSGrUyDAlIaUUpRoFUsyaBZHQLTuASAYpDx1fZQoaAZoCWgPQwjvAiUFFsAqwJSGlFKUaBVLMmgWR0C07abyDqW1dX2UKGgGaAloD0MIK2ub4nFxE8CUhpRSlGgVSzJoFkdAtO8057w8XHV9lChoBmgJaA9DCJ2huONN+jLAlIaUUpRoFUsyaBZHQLTu6IZqEe11fZQoaAZoCWgPQwhREhJpG18wwJSGlFKUaBVLMmgWR0C07poNd7fIdX2UKGgGaAloD0MIru/DQUJ0EsCUhpRSlGgVSzJoFkdAtO4/pdKNAHV9lChoBmgJaA9DCPWidr8KQBrAlIaUUpRoFUsyaBZHQLTvxCPp6hR1fZQoaAZoCWgPQwiKBil4CrEkwJSGlFKUaBVLMmgWR0C073efVZs9dX2UKGgGaAloD0MIthDkoISpGMCUhpRSlGgVSzJoFkdAtO8o7V8TjHV9lChoBmgJaA9DCB0c7E0MmRzAlIaUUpRoFUsyaBZHQLTuzomXw9d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 4, "gamma": 0.98, "gae_lambda": 0.8, "ent_coef": 0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f799f1ec820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f799f1e0e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 1200000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678033007883643481, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+6EC+PqUt+zxzp/U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAA6NJDv3Ib2j+RlQA/xVVSvxK+iD/Bdh0+9pUPvDuOEL/R4xQ+7r1GvxDimD86Aa0+oUg8PwLU+b7A/LU/Ok5sv/jgij9Gf1S/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwrvoQL4+pS37PHOn9T5E2R+9zGjWOtHIwruUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]\n [0.37158895 0.03066141 0.47979316]]", "desired_goal": "[[-0.7649369 1.7039626 0.5022822 ]\n [-0.82162124 1.0683005 0.15377332]\n [-0.00876378 -0.56467026 0.1454003 ]\n [-0.7763356 1.1943989 0.33789998]\n [ 0.7354832 -0.48794562 1.4217758 ]\n [-0.92306864 1.0849905 -0.83006704]]", "observation": "[[ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]\n [ 0.37158895 0.03066141 0.47979316 -0.03902556 0.00163581 -0.00594435]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAEBAQEBAZSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAAHd3PW9FDz7txy0+0QcSvUibpD1WuJQ+OhjZvbNYe71ykFc+bZUwvd/9ID2eTa09AxMLvvnrVj0vgJI+lG5OvSSl2z1G6bI9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06041622 0.1399133 0.16970797]\n [-0.03565199 0.0803743 0.29046887]\n [-0.10600324 -0.06136389 0.21051195]\n [-0.04311125 0.03930461 0.0846207 ]\n [-0.13581471 0.05247113 0.2861342 ]\n [-0.05039842 0.10724857 0.087359 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBcWPMXfNCMCUhpRSlIwBbJRLMowBdJRHQK/N8eU6gdx1fZQoaAZoCWgPQwhpxqLp7KT/v5SGlFKUaBVLMmgWR0CvzX59NN8FdX2UKGgGaAloD0MIZtmTwObcBMCUhpRSlGgVSzJoFkdAr80GK0lZ5nV9lChoBmgJaA9DCFIQPL69CxTAlIaUUpRoFUsyaBZHQK/Miz1K5Cp1fZQoaAZoCWgPQwhqMXiY9m0EwJSGlFKUaBVLMmgWR0Cv0dL+5vtMdX2UKGgGaAloD0MILuQR3EiZEcCUhpRSlGgVSzJoFkdAr9FfA0sOG3V9lChoBmgJaA9DCDsZHCWvTve/lIaUUpRoFUsyaBZHQK/Q6QOFxn51fZQoaAZoCWgPQwjjiSDOw2kKwJSGlFKUaBVLMmgWR0Cv0HX9zfaYdX2UKGgGaAloD0MIXYsWoG2FFcCUhpRSlGgVSzJoFkdAr8/9RNyo43V9lChoBmgJaA9DCIdqSrIORwbAlIaUUpRoFUsyaBZHQK/PgaKk2xZ1fZQoaAZoCWgPQwiDGVOwxvkDwJSGlFKUaBVLMmgWR0Cv1JWrGR3edX2UKGgGaAloD0MIStI1k2+WB8CUhpRSlGgVSzJoFkdAr9Qg2bXpW3V9lChoBmgJaA9DCI7Idyl1Sf2/lIaUUpRoFUsyaBZHQK/TqRcNYr91fZQoaAZoCWgPQwiZDMfzGXALwJSGlFKUaBVLMmgWR0Cv0zQzch1UdX2UKGgGaAloD0MIoGtfQC88BsCUhpRSlGgVSzJoFkdAr9K6LwWnCXV9lChoBmgJaA9DCE8EcR5OYALAlIaUUpRoFUsyaBZHQK/SPaVUuL91fZQoaAZoCWgPQwjOUNzxJv8KwJSGlFKUaBVLMmgWR0Cv1keRoysTdX2UKGgGaAloD0MIj6uRXWmZ/r+UhpRSlGgVSzJoFkdAr9XS2nbZe3V9lChoBmgJaA9DCKLw2To4GA/AlIaUUpRoFUsyaBZHQK/VWzv7WNF1fZQoaAZoCWgPQwii0/NuLIgBwJSGlFKUaBVLMmgWR0Cv1ObC79Q5dX2UKGgGaAloD0MItMnhk07kDsCUhpRSlGgVSzJoFkdAr9Rs0vXbunV9lChoBmgJaA9DCDXvOEVHMgHAlIaUUpRoFUsyaBZHQK/T8OiFj/d1fZQoaAZoCWgPQwgkm6vmOaINwJSGlFKUaBVLMmgWR0Cv1/BbGFSLdX2UKGgGaAloD0MIrz4e+u7W9r+UhpRSlGgVSzJoFkdAr9d7rC3w1HV9lChoBmgJaA9DCM5sV+iD1RTAlIaUUpRoFUsyaBZHQK/XBCkXUH91fZQoaAZoCWgPQwh0et6NBYUNwJSGlFKUaBVLMmgWR0Cv1o/GVAzIdX2UKGgGaAloD0MIQYNNnUclA8CUhpRSlGgVSzJoFkdAr9YVxEORT3V9lChoBmgJaA9DCK2JBb6iOwbAlIaUUpRoFUsyaBZHQK/VmQxN7Bx1fZQoaAZoCWgPQwhjey3ovcETwJSGlFKUaBVLMmgWR0Cv2ccfNiYtdX2UKGgGaAloD0MI/YNIhhzbFsCUhpRSlGgVSzJoFkdAr9lSUs4DLnV9lChoBmgJaA9DCK6dKAmJ9Pu/lIaUUpRoFUsyaBZHQK/Y2uloDgZ1fZQoaAZoCWgPQwjpnnWNlpMXwJSGlFKUaBVLMmgWR0Cv2GZO8CgcdX2UKGgGaAloD0MILcxCO6eZ9b+UhpRSlGgVSzJoFkdAr9ftYMfA9HV9lChoBmgJaA9DCOXuc3y0GAjAlIaUUpRoFUsyaBZHQK/XcKWLP2R1fZQoaAZoCWgPQwg6kPXU6qsPwJSGlFKUaBVLMmgWR0Cv24z4+KTCdX2UKGgGaAloD0MIA7ABEeLK/b+UhpRSlGgVSzJoFkdAr9sYXj2i+XV9lChoBmgJaA9DCFVtN8E3zfu/lIaUUpRoFUsyaBZHQK/aoMWoFV11fZQoaAZoCWgPQwi0IJT3cdQAwJSGlFKUaBVLMmgWR0Cv2ixkmQbNdX2UKGgGaAloD0MInGnC9pMxAMCUhpRSlGgVSzJoFkdAr9myiGnGbXV9lChoBmgJaA9DCADmWrQALfe/lIaUUpRoFUsyaBZHQK/ZNxx1gYx1fZQoaAZoCWgPQwiuug7VlOT5v5SGlFKUaBVLMmgWR0Cv3TXd9Dx9dX2UKGgGaAloD0MIA7Fs5pA0BcCUhpRSlGgVSzJoFkdAr9zA/iYLLXV9lChoBmgJaA9DCGNjXkccUgzAlIaUUpRoFUsyaBZHQK/cSTSsr/d1fZQoaAZoCWgPQwgHz4QmiSUCwJSGlFKUaBVLMmgWR0Cv29SLZSNwdX2UKGgGaAloD0MIFr8prFQQBMCUhpRSlGgVSzJoFkdAr9tanBLwnnV9lChoBmgJaA9DCCXnxB7ahwbAlIaUUpRoFUsyaBZHQK/a3fm9xqB1fZQoaAZoCWgPQwh8f4P26uMHwJSGlFKUaBVLMmgWR0Cv3tUVi4KAdX2UKGgGaAloD0MIMLsnDwuVAsCUhpRSlGgVSzJoFkdAr95gRywOfHV9lChoBmgJaA9DCHzxRXu8ABHAlIaUUpRoFUsyaBZHQK/d6LVnVXp1fZQoaAZoCWgPQwjGMZI9Qs0IwJSGlFKUaBVLMmgWR0Cv3XRl6JIldX2UKGgGaAloD0MIEVX4M7yZ/b+UhpRSlGgVSzJoFkdAr9z6f4AS4HV9lChoBmgJaA9DCFhZ2xSPSwLAlIaUUpRoFUsyaBZHQK/cfe1rqMZ1fZQoaAZoCWgPQwi858ByhKwJwJSGlFKUaBVLMmgWR0Cv4SLs8gZCdX2UKGgGaAloD0MIM1GE1O2s+b+UhpRSlGgVSzJoFkdAr+CvfwZwXXV9lChoBmgJaA9DCIwVNZiGIf+/lIaUUpRoFUsyaBZHQK/gOH5aePJ1fZQoaAZoCWgPQwiuYvGbwgr6v5SGlFKUaBVLMmgWR0Cv38SvLX+VdX2UKGgGaAloD0MI+Z0mM94WCMCUhpRSlGgVSzJoFkdAr99Ldepn6HV9lChoBmgJaA9DCDXSUnk7MhHAlIaUUpRoFUsyaBZHQK/e0AlOXVt1fZQoaAZoCWgPQwhYy52ZYLj6v5SGlFKUaBVLMmgWR0Cv5IbtiQT3dX2UKGgGaAloD0MI8b2/QXt1AMCUhpRSlGgVSzJoFkdAr+QS5mRNh3V9lChoBmgJaA9DCNQLPs3JiwvAlIaUUpRoFUsyaBZHQK/jnA57w8Z1fZQoaAZoCWgPQwjt1FxuMHQIwJSGlFKUaBVLMmgWR0Cv4ygOjIq9dX2UKGgGaAloD0MIVgxXB0Ac9L+UhpRSlGgVSzJoFkdAr+KxTGYKIHV9lChoBmgJaA9DCP+SVKaYw/W/lIaUUpRoFUsyaBZHQK/iN70nPVx1fZQoaAZoCWgPQwh0fLQ4Y7gJwJSGlFKUaBVLMmgWR0Cv52AM2FWXdX2UKGgGaAloD0MIg4WTNH/MA8CUhpRSlGgVSzJoFkdAr+bsUdq+J3V9lChoBmgJaA9DCHOh8q/lVfW/lIaUUpRoFUsyaBZHQK/mdXoTwlV1fZQoaAZoCWgPQwgaMh6lEt4AwJSGlFKUaBVLMmgWR0Cv5gHYYixFdX2UKGgGaAloD0MIpfRMLzE2FMCUhpRSlGgVSzJoFkdAr+WJbQkX13V9lChoBmgJaA9DCJYhjnVx2wnAlIaUUpRoFUsyaBZHQK/lDo6jnFJ1fZQoaAZoCWgPQwjMRBFSt1MFwJSGlFKUaBVLMmgWR0Cv6kKdxyXEdX2UKGgGaAloD0MIfA3BcRn3AMCUhpRSlGgVSzJoFkdAr+nOI/JNkHV9lChoBmgJaA9DCAEydOygcg3AlIaUUpRoFUsyaBZHQK/pVsUIsy11fZQoaAZoCWgPQwjEQxg/jbsOwJSGlFKUaBVLMmgWR0Cv6OJKaodddX2UKGgGaAloD0MI3Zcz2xWaC8CUhpRSlGgVSzJoFkdAr+hoQ176YXV9lChoBmgJaA9DCFbw2xDjtfS/lIaUUpRoFUsyaBZHQK/n7A+IM0B1fZQoaAZoCWgPQwhJaTaPw6ALwJSGlFKUaBVLMmgWR0Cv6/guqWC3dX2UKGgGaAloD0MIvFtZorMMDMCUhpRSlGgVSzJoFkdAr+uDQ7cO9XV9lChoBmgJaA9DCDGXVG03oQbAlIaUUpRoFUsyaBZHQK/rC+dsi0R1fZQoaAZoCWgPQwic4QZ8fpgQwJSGlFKUaBVLMmgWR0Cv6pdhiLEUdX2UKGgGaAloD0MImfG20mvTAsCUhpRSlGgVSzJoFkdAr+odOj7AL3V9lChoBmgJaA9DCJUO1v85rAXAlIaUUpRoFUsyaBZHQK/poJx//ed1fZQoaAZoCWgPQwh4CyQofmwHwJSGlFKUaBVLMmgWR0Cv7aee4Cp4dX2UKGgGaAloD0MI7zzxnC0g+b+UhpRSlGgVSzJoFkdAr+0zDfm9x3V9lChoBmgJaA9DCP7Soj7J/QLAlIaUUpRoFUsyaBZHQK/su1XNke91fZQoaAZoCWgPQwj19XzNcpn7v5SGlFKUaBVLMmgWR0Cv7EaM72csdX2UKGgGaAloD0MIAmGnWDVI+b+UhpRSlGgVSzJoFkdAr+vMcGTs6nV9lChoBmgJaA9DCIBlpUkpiADAlIaUUpRoFUsyaBZHQK/rUCg9Net1fZQoaAZoCWgPQwjII7iRsuUFwJSGlFKUaBVLMmgWR0Cv71XX7LuAdX2UKGgGaAloD0MI1UDzOXd7BMCUhpRSlGgVSzJoFkdAr+7hXwLE1nV9lChoBmgJaA9DCEW8df7t8v+/lIaUUpRoFUsyaBZHQK/uad7v5QB1fZQoaAZoCWgPQwium1JeK0ECwJSGlFKUaBVLMmgWR0Cv7fUa6z3RdX2UKGgGaAloD0MIUvLqHAPy/7+UhpRSlGgVSzJoFkdAr+17IV/MGHV9lChoBmgJaA9DCMh4lEp4ggrAlIaUUpRoFUsyaBZHQK/s/qxC6Yp1fZQoaAZoCWgPQwiqmiDqPgABwJSGlFKUaBVLMmgWR0Cv8QZPdl/ZdX2UKGgGaAloD0MIZf7RN2ka/b+UhpRSlGgVSzJoFkdAr/CRiExqPHV9lChoBmgJaA9DCD83NGWnXwTAlIaUUpRoFUsyaBZHQK/wGdPLxI91fZQoaAZoCWgPQwhMqrab4Jv9v5SGlFKUaBVLMmgWR0Cv76TmGM4tdX2UKGgGaAloD0MIXHUdqilJ/r+UhpRSlGgVSzJoFkdAr+8rmwJPZnV9lChoBmgJaA9DCPhvXpz4avq/lIaUUpRoFUsyaBZHQK/ur0Cih391ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -10.964657618291676, "std_reward": 5.574423456173366, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T23:21:03.702864"}
 
1
+ {"mean_reward": -2.3679681713460012, "std_reward": 0.44616334362014815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T17:28:09.559383"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66304e7a564cf1e93fabc51edf4f353ef85b8937ba34c430acf29353c9696a21
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d480f8eb1193005b325318f1d36f04ccccae71418ed7e20b4e7485ee3f2e84
3
  size 3056