File size: 2,091 Bytes
ac289d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9e80
 
 
 
 
 
 
 
ac289d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951c41b
bd2414b
b9e9e80
ac289d5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented_05
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-base-finetuned-ctfl-augmented_05

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.8959
- Validation Loss: 1.4532
- Train Rouge1: 7.4965
- Train Rouge2: 1.5842
- Train Rougel: 7.4257
- Train Rougelsum: 7.5436
- Train Gen Len: 11.3911
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 5.9893     | 2.6002          | 4.4884       | 0.4950       | 4.3454       | 4.3399          | 8.3168        | 0     |
| 2.9777     | 2.0796          | 4.7619       | 0.3300       | 4.7000       | 4.8444          | 10.2723       | 1     |
| 2.3190     | 1.7755          | 6.4356       | 1.0891       | 6.5064       | 6.5535          | 10.6881       | 2     |
| 1.8959     | 1.4532          | 7.4965       | 1.5842       | 7.4257       | 7.5436          | 11.3911       | 3     |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1