File size: 5,212 Bytes
ac289d5 51e72c4 bec6c50 51e72c4 ac289d5 951c41b bd2414b b9e9e80 4781c50 f9ed545 768aa31 8842048 0d98e3f 3937479 2533e6c 78e00b4 6850a8f 2965ce4 8192a57 6f57746 1a49b7d c66474c 5be3216 de9c94b 711e6c5 740f460 82cc66d 4c04f7c 32cabb4 3d415c9 5a1414b c257bc4 bec6c50 51e72c4 ac289d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented_05
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pakawadeep/mt5-base-finetuned-ctfl-augmented_05
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3668
- Validation Loss: 0.7815
- Train Rouge1: 8.5926
- Train Rouge2: 0.7921
- Train Rougel: 8.5573
- Train Rougelsum: 8.7341
- Train Gen Len: 11.8861
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 5.9893 | 2.6002 | 4.4884 | 0.4950 | 4.3454 | 4.3399 | 8.3168 | 0 |
| 2.9777 | 2.0796 | 4.7619 | 0.3300 | 4.7000 | 4.8444 | 10.2723 | 1 |
| 2.3190 | 1.7755 | 6.4356 | 1.0891 | 6.5064 | 6.5535 | 10.6881 | 2 |
| 1.8959 | 1.4532 | 7.4965 | 1.5842 | 7.4257 | 7.5436 | 11.3911 | 3 |
| 1.5823 | 1.2455 | 7.7086 | 2.0792 | 7.4965 | 7.7086 | 11.7673 | 4 |
| 1.3569 | 1.1076 | 8.4866 | 2.0792 | 8.4866 | 8.6987 | 11.8861 | 5 |
| 1.2095 | 1.0615 | 8.4866 | 2.0792 | 8.4866 | 8.6987 | 11.9802 | 6 |
| 1.1007 | 0.9902 | 8.9109 | 2.2772 | 8.7694 | 8.9816 | 11.9455 | 7 |
| 1.0050 | 0.9564 | 8.9109 | 2.2772 | 8.7694 | 8.9816 | 11.9455 | 8 |
| 0.9284 | 0.8988 | 8.6987 | 1.7822 | 8.6752 | 8.8166 | 11.9307 | 9 |
| 0.8636 | 0.8796 | 8.6987 | 1.7822 | 8.6752 | 8.8166 | 11.9109 | 10 |
| 0.8182 | 0.8624 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.8762 | 11 |
| 0.7744 | 0.8172 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.8812 | 12 |
| 0.7333 | 0.8051 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.9208 | 13 |
| 0.6928 | 0.8167 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.9109 | 14 |
| 0.6587 | 0.7863 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8960 | 15 |
| 0.6302 | 0.7844 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8960 | 16 |
| 0.6025 | 0.7772 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.9059 | 17 |
| 0.5816 | 0.7697 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8861 | 18 |
| 0.5561 | 0.7654 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8317 | 19 |
| 0.5359 | 0.7703 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8861 | 20 |
| 0.5144 | 0.7546 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8564 | 21 |
| 0.4976 | 0.7550 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8614 | 22 |
| 0.4725 | 0.7612 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8515 | 23 |
| 0.4520 | 0.7772 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8218 | 24 |
| 0.4321 | 0.7647 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8069 | 25 |
| 0.4157 | 0.7598 | 8.4866 | 0.7921 | 8.4335 | 8.5573 | 11.8218 | 26 |
| 0.3985 | 0.7657 | 8.7694 | 1.2871 | 8.7694 | 8.9816 | 11.8812 | 27 |
| 0.3863 | 0.7613 | 8.4158 | 0.7921 | 8.4158 | 8.4689 | 11.8218 | 28 |
| 0.3668 | 0.7815 | 8.5926 | 0.7921 | 8.5573 | 8.7341 | 11.8861 | 29 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|