File size: 4,497 Bytes
78859a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd88a55
 
 
7cc5683
cd88a55
 
 
 
78859a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77f6b4
79c3b31
20e0886
846d2a1
972a77e
06004fd
fc6941b
1ae9d09
0bce1f5
bea2f7b
6c8371c
0b7cac4
625917a
b84bf89
75454fb
7cc5683
be21392
bc566be
d8dae9e
2927e0c
f9ae9ae
cadefdf
cd88a55
78859a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_05
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-small-finetuned-ctfl-augmented_05

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9083
- Validation Loss: 0.9637
- Train Rouge1: 8.4866
- Train Rouge2: 1.3861
- Train Rougel: 8.4512
- Train Rougelsum: 8.4866
- Train Gen Len: 11.9554
- Epoch: 23

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 9.2952     | 2.6353          | 1.5618       | 0.0          | 1.5117       | 1.5288          | 16.5347       | 0     |
| 4.7507     | 1.8159          | 5.5776       | 0.2888       | 5.5611       | 5.5281          | 12.2475       | 1     |
| 3.4617     | 1.8004          | 4.7218       | 0.2888       | 4.7218       | 4.6723          | 11.2723       | 2     |
| 2.8272     | 1.7197          | 6.1410       | 0.8251       | 6.1410       | 6.0113          | 11.1634       | 3     |
| 2.4003     | 1.6328          | 7.7086       | 2.1782       | 7.7086       | 7.7086          | 11.7277       | 4     |
| 2.0952     | 1.5374          | 8.2037       | 2.1782       | 8.2037       | 8.2037          | 11.8713       | 5     |
| 1.8634     | 1.4405          | 8.2037       | 2.1782       | 8.2037       | 8.2037          | 11.9406       | 6     |
| 1.6782     | 1.3615          | 8.2037       | 2.1782       | 8.2037       | 8.2037          | 11.9307       | 7     |
| 1.5333     | 1.3046          | 8.6987       | 2.1782       | 8.6987       | 8.6987          | 11.9356       | 8     |
| 1.4151     | 1.2718          | 8.6987       | 2.1782       | 8.6987       | 8.6987          | 11.9455       | 9     |
| 1.3320     | 1.2373          | 8.6987       | 2.1782       | 8.6987       | 8.6987          | 11.9406       | 10    |
| 1.2664     | 1.2064          | 8.9816       | 2.3762       | 8.9109       | 8.9816          | 11.9158       | 11    |
| 1.2220     | 1.1775          | 8.9816       | 2.3762       | 8.9109       | 8.9816          | 11.9356       | 12    |
| 1.1767     | 1.1413          | 8.9816       | 2.3762       | 8.9109       | 8.9816          | 11.9554       | 13    |
| 1.1303     | 1.1072          | 8.9816       | 2.3762       | 8.9109       | 8.9816          | 11.9505       | 14    |
| 1.0972     | 1.0782          | 8.6987       | 1.7822       | 8.6987       | 8.6987          | 11.9703       | 15    |
| 1.0664     | 1.0578          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9554       | 16    |
| 1.0392     | 1.0504          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9752       | 17    |
| 1.0152     | 1.0242          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9653       | 18    |
| 0.9892     | 1.0193          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9703       | 19    |
| 0.9627     | 0.9990          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9802       | 20    |
| 0.9460     | 0.9869          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9752       | 21    |
| 0.9262     | 0.9735          | 7.9562       | 1.3861       | 7.9562       | 7.9562          | 11.9703       | 22    |
| 0.9083     | 0.9637          | 8.4866       | 1.3861       | 8.4512       | 8.4866          | 11.9554       | 23    |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1