File size: 4,975 Bytes
c956231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e457a
 
a3b9c03
8b39392
a3b9c03
 
14e457a
 
c956231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392c616
16892ce
767f863
3bb0b3a
3c1163f
e2b82db
dfb978e
8c4e156
ff30839
80b7319
4e5b763
8b39392
5bae1fe
0c9d120
725abd0
920dfda
a866ad1
a3b9c03
5480f55
815667b
ad3d9ae
7722cc4
a2514ce
892eebe
83fb06a
5ce6d3f
14e457a
c956231
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_2
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-small-finetuned-ctfl-augmented_2

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7005
- Validation Loss: 0.9348
- Train Rouge1: 7.9562
- Train Rouge2: 1.3861
- Train Rougel: 7.9562
- Train Rougelsum: 7.9915
- Train Gen Len: 11.9752
- Epoch: 27

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 8.2342     | 2.0102          | 1.5963       | 0.0          | 1.6101       | 1.6005          | 16.5050       | 0     |
| 3.7896     | 1.7810          | 4.8515       | 0.7426       | 4.8845       | 4.8680          | 11.8614       | 1     |
| 2.7018     | 1.7212          | 6.8812       | 1.4851       | 6.8812       | 6.8812          | 11.9554       | 2     |
| 2.1382     | 1.5885          | 7.8996       | 2.0792       | 7.9066       | 7.9066          | 11.9010       | 3     |
| 1.7718     | 1.4799          | 7.7086       | 2.0792       | 7.7086       | 7.7086          | 11.8911       | 4     |
| 1.5137     | 1.3902          | 7.7086       | 2.0792       | 7.7086       | 7.7086          | 11.9653       | 5     |
| 1.3341     | 1.3439          | 8.6987       | 2.0792       | 8.6987       | 8.6987          | 11.9307       | 6     |
| 1.2253     | 1.2605          | 8.6987       | 2.0792       | 8.6987       | 8.6987          | 11.9356       | 7     |
| 1.1425     | 1.2215          | 8.9816       | 2.3762       | 8.9816       | 8.9816          | 11.9356       | 8     |
| 1.0872     | 1.1772          | 8.9816       | 2.3762       | 8.9816       | 8.9816          | 11.9554       | 9     |
| 1.0400     | 1.1338          | 8.6987       | 1.8812       | 8.6987       | 8.7341          | 11.9604       | 10    |
| 0.9997     | 1.0986          | 8.6987       | 1.8812       | 8.6987       | 8.7341          | 11.9554       | 11    |
| 0.9732     | 1.0846          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9653       | 12    |
| 0.9388     | 1.0718          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9752       | 13    |
| 0.9140     | 1.0483          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9505       | 14    |
| 0.8902     | 1.0285          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9554       | 15    |
| 0.8704     | 1.0147          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9505       | 16    |
| 0.8490     | 1.0094          | 8.4512       | 1.3861       | 8.4158       | 8.4866          | 11.9505       | 17    |
| 0.8338     | 0.9880          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9406       | 18    |
| 0.8139     | 0.9921          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9455       | 19    |
| 0.7992     | 0.9765          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9604       | 20    |
| 0.7806     | 0.9704          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9604       | 21    |
| 0.7651     | 0.9523          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9554       | 22    |
| 0.7560     | 0.9615          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9653       | 23    |
| 0.7370     | 0.9489          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9752       | 24    |
| 0.7263     | 0.9350          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9604       | 25    |
| 0.7111     | 0.9425          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9802       | 26    |
| 0.7005     | 0.9348          | 7.9562       | 1.3861       | 7.9562       | 7.9915          | 11.9752       | 27    |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1