File size: 2,334 Bytes
c956231 3c1163f 3bb0b3a 767f863 3bb0b3a 3c1163f c956231 392c616 16892ce 767f863 3bb0b3a 3c1163f c956231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pakawadeep/mt5-small-finetuned-ctfl-augmented_2
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5137
- Validation Loss: 1.3902
- Train Rouge1: 7.7086
- Train Rouge2: 2.0792
- Train Rougel: 7.7086
- Train Rougelsum: 7.7086
- Train Gen Len: 11.9653
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 8.2342 | 2.0102 | 1.5963 | 0.0 | 1.6101 | 1.6005 | 16.5050 | 0 |
| 3.7896 | 1.7810 | 4.8515 | 0.7426 | 4.8845 | 4.8680 | 11.8614 | 1 |
| 2.7018 | 1.7212 | 6.8812 | 1.4851 | 6.8812 | 6.8812 | 11.9554 | 2 |
| 2.1382 | 1.5885 | 7.8996 | 2.0792 | 7.9066 | 7.9066 | 11.9010 | 3 |
| 1.7718 | 1.4799 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.8911 | 4 |
| 1.5137 | 1.3902 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.9653 | 5 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|