File size: 5,215 Bytes
c956231 15def42 a3b9c03 8b39392 a3b9c03 15def42 c956231 392c616 16892ce 767f863 3bb0b3a 3c1163f e2b82db dfb978e 8c4e156 ff30839 80b7319 4e5b763 8b39392 5bae1fe 0c9d120 725abd0 920dfda a866ad1 a3b9c03 5480f55 815667b ad3d9ae 7722cc4 a2514ce 892eebe 83fb06a 5ce6d3f 14e457a 1876cc6 15def42 c956231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pakawadeep/mt5-small-finetuned-ctfl-augmented_2
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6759
- Validation Loss: 0.9239
- Train Rouge1: 7.9562
- Train Rouge2: 1.3861
- Train Rougel: 7.9562
- Train Rougelsum: 7.9915
- Train Gen Len: 11.9653
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 8.2342 | 2.0102 | 1.5963 | 0.0 | 1.6101 | 1.6005 | 16.5050 | 0 |
| 3.7896 | 1.7810 | 4.8515 | 0.7426 | 4.8845 | 4.8680 | 11.8614 | 1 |
| 2.7018 | 1.7212 | 6.8812 | 1.4851 | 6.8812 | 6.8812 | 11.9554 | 2 |
| 2.1382 | 1.5885 | 7.8996 | 2.0792 | 7.9066 | 7.9066 | 11.9010 | 3 |
| 1.7718 | 1.4799 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.8911 | 4 |
| 1.5137 | 1.3902 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.9653 | 5 |
| 1.3341 | 1.3439 | 8.6987 | 2.0792 | 8.6987 | 8.6987 | 11.9307 | 6 |
| 1.2253 | 1.2605 | 8.6987 | 2.0792 | 8.6987 | 8.6987 | 11.9356 | 7 |
| 1.1425 | 1.2215 | 8.9816 | 2.3762 | 8.9816 | 8.9816 | 11.9356 | 8 |
| 1.0872 | 1.1772 | 8.9816 | 2.3762 | 8.9816 | 8.9816 | 11.9554 | 9 |
| 1.0400 | 1.1338 | 8.6987 | 1.8812 | 8.6987 | 8.7341 | 11.9604 | 10 |
| 0.9997 | 1.0986 | 8.6987 | 1.8812 | 8.6987 | 8.7341 | 11.9554 | 11 |
| 0.9732 | 1.0846 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9653 | 12 |
| 0.9388 | 1.0718 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9752 | 13 |
| 0.9140 | 1.0483 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 14 |
| 0.8902 | 1.0285 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9554 | 15 |
| 0.8704 | 1.0147 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 16 |
| 0.8490 | 1.0094 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 17 |
| 0.8338 | 0.9880 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9406 | 18 |
| 0.8139 | 0.9921 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9455 | 19 |
| 0.7992 | 0.9765 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 20 |
| 0.7806 | 0.9704 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 21 |
| 0.7651 | 0.9523 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9554 | 22 |
| 0.7560 | 0.9615 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9653 | 23 |
| 0.7370 | 0.9489 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9752 | 24 |
| 0.7263 | 0.9350 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 25 |
| 0.7111 | 0.9425 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9802 | 26 |
| 0.7005 | 0.9348 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9752 | 27 |
| 0.6912 | 0.9213 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9752 | 28 |
| 0.6759 | 0.9239 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9653 | 29 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|