File size: 13,754 Bytes
097d994 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf305595750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf3055957e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf305595870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf305595900>", "_build": "<function ActorCriticPolicy._build at 0x7bf305595990>", "forward": "<function ActorCriticPolicy.forward at 0x7bf305595a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf305595ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf305595b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf305595bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf305595c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf305595cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf305595d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf305598d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693248072078964635, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYeYD6OzyU/EeE0vvRVVb5y3l88sJ35vAAAAAAAAAAAmsNSPTg3lT7yqD6+i0SIvq36L71G6W46AAAAAAAAAACzmOw93WxqPyO4CrzHaLS+82CSPd3KxLwAAAAAAAAAAFP5JL405j8+JaHaPQPYSb68u5s6/ebIPAAAAAAAAAAAE4CYPgYuND8lkVm+7amMvqBwgTzuMbK8AAAAAAAAAAAaiBG9by3GPprjpD2TB5C+GacNPQuodTsAAAAAAAAAAM37Wb3d+JY/dprEvaUVa75Y/ue980jwPAAAAAAAAAAAwOg5vk9A0D7cmDY+dJqQvrW88Tx6rJk9AAAAAAAAAABm/Fs9e6aZur7IC7omIKe4kP/Yus4kKjkAAIA/AACAP/Ow7T0pYB26jbuOvHco4LpYQpY7TGrEuwAAgD8AAIA/ZhfJPXVPWT7ql729bQ1kvrr2aLyaBLG9AAAAAAAAAACAnzg9G26jPvgvGDwVTZC+iwsyuWDbszwAAAAAAAAAAADa7Tzh3Kq6qlcANoCqxzCly4E6CuEftQAAgD8AAIA/86LYvXvmjLpKPro2DUtrMXrXp7rTHNm1AACAPwAAgD9NhQk+Nq1YvHSMtDxOApo8+lBrPWqDgb0AAIA/AACAP4DOob1EUmc/yEFePZxnvL4fbK29B8uMPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4uOafBeomMAWyUTSkBjAF0lEdAlpSNVmz0H3V9lChoBkdAbScE4//vOWgHTTkBaAhHQJaVjZRKpUB1fZQoaAZHQHIdF3pwCKdoB00CAWgIR0CWljdVea8ZdX2UKGgGR0BtYQ+GGmDUaAdNHwFoCEdAlpku2y9mH3V9lChoBkdAcdMtDUmUn2gHTTYBaAhHQJaZ0ewLVnV1fZQoaAZHQHDs4/NZ/1BoB005AWgIR0CWmxKb8WKudX2UKGgGR0BjDiWu5jH5aAdN6ANoCEdAlptgVGkN4XV9lChoBkdAbPPCcf/3nWgHTUwBaAhHQJabrBHkLhJ1fZQoaAZHQGNihq0tyxRoB03oA2gIR0CWnNTsY2sJdX2UKGgGR0BxCf0e2d/baAdNbgFoCEdAlp880YTCcnV9lChoBkdAbH1L39JjD2gHTUUBaAhHQJafYAeaKDV1fZQoaAZHQHEPC0KJEYxoB00dAWgIR0CWn2eTV2A5dX2UKGgGR0BvvAlv60pmaAdNJAFoCEdAlqB+7lJYknV9lChoBkdAcZJQgs9SuWgHTTwBaAhHQJaiJpyp71J1fZQoaAZHQG4Lm+9Jz1doB01gAWgIR0CWoiLv1DjSdX2UKGgGR0BhpkOf/WDpaAdN6ANoCEdAlqMiimEXcnV9lChoBkdAb/81Aqur62gHTVMBaAhHQJakvLyMDOl1fZQoaAZHQHK6sm4RVZNoB01AAWgIR0CWpa+OfdyldX2UKGgGR0Bs6Y6hg3LnaAdNYAFoCEdAlqaG96C17nV9lChoBkdAciV82rGR3mgHTUsBaAhHQJapsJ5VwP11fZQoaAZHQG9KZUcXFcZoB01cAWgIR0CWqdM8YAKfdX2UKGgGR0BtmPy08eS0aAdNNQFoCEdAlqoCGWUr1HV9lChoBkdAbZBX18LKFWgHTTEBaAhHQJaqFT1kDp11fZQoaAZHQHH2jpC8e0ZoB00fAWgIR0CWqklLeyiVdX2UKGgGR0BvD2OyVv/BaAdNTgFoCEdAlqqREa2nbnV9lChoBkdAcZBFTvRZ2mgHTR8BaAhHQJarplsguAZ1fZQoaAZHQHJ6pdnkDIRoB003AWgIR0CWrJA+IMz/dX2UKGgGR0Bw5ip4rz5HaAdNOwFoCEdAlq2FQhwEQ3V9lChoBkdAbeKmw7kn1GgHTVcBaAhHQJatpiUgSvl1fZQoaAZHQHGYwFgUlAxoB00+AWgIR0CWrqQw9JSSdX2UKGgGR0BIwrQHAymAaAdNAQFoCEdAlq8hrFfiP3V9lChoBkdAcYi+zt1IRWgHTRoBaAhHQJavY4BFNL11fZQoaAZHQG5WNOuaF25oB01TAWgIR0CWsBfhuO0cdX2UKGgGR0BrVIXqJMxoaAdNnQFoCEdAlrHeM+/xlXV9lChoBkdAcjeJ79hqkGgHTUgBaAhHQJayD336AOJ1fZQoaAZHQHFJY9LYf4hoB00WAWgIR0CWsyai9IwudX2UKGgGR0Bw5vNKRMewaAdNKgFoCEdAlrN4EGJN03V9lChoBkdAcKM+SbH6uWgHTS0BaAhHQJazz7zkIX11fZQoaAZHQHHznXyy2QZoB0v/aAhHQJa0F1eSjg11fZQoaAZHQHDJa90zTF5oB01vAWgIR0CWtmJzDGcXdX2UKGgGR0A+JaJyhi9aaAdNDwFoCEdAlraS2+fyw3V9lChoBkdAbvrPWQOnVGgHTW4BaAhHQJa2ssBhhH91fZQoaAZHQHGFSG8EmploB004AWgIR0CWtvs+mm+CdX2UKGgGR0BtVEBOpKjBaAdNJwFoCEdAlrh8P8Q7LnV9lChoBkdAcEOtzS1E3WgHTSIBaAhHQJa48ljVhCt1fZQoaAZHQHGntT1kDp1oB01bAWgIR0CWuSWgezUrdX2UKGgGR0BxEMNy5qdpaAdNMgFoCEdAlrlLVFx4p3V9lChoBkdAcAN7ROUMX2gHTRgBaAhHQJa5XJHRTjx1fZQoaAZHQG8gfI0ZWJdoB00pAWgIR0CWu2/47A+IdX2UKGgGR0Bxl0f8uSOjaAdNKQFoCEdAlsvnymQ8wHV9lChoBkdAbWBAv+OwPmgHTRsBaAhHQJbMvU4JeE91fZQoaAZHQGy50KRdQfpoB00aAWgIR0CWzQ9TP0I1dX2UKGgGR0BxArRa5f+kaAdNQQFoCEdAls2da2WpqHV9lChoBkdAMy+Q+2VmjGgHS/toCEdAls6DKDCgsnV9lChoBkdAbxNUYsNDt2gHTT4BaAhHQJbOjULDye91fZQoaAZHQHBzROYYzi1oB00kAWgIR0CW0D1PnB+GdX2UKGgGR0BupiR8twrEaAdNOQFoCEdAltEf+fh/AnV9lChoBkdAbJRmdRR/E2gHTTABaAhHQJbRU84gieN1fZQoaAZHQHDdSyUs4DNoB00yAWgIR0CW1QWYnfEXdX2UKGgGR0Bxy5fgJkXlaAdNNAFoCEdAltUGV/tpmHV9lChoBkdAcGrosI3R5WgHTUUBaAhHQJbVqfAbhm51fZQoaAZHQHDFL1AZ88doB01mAWgIR0CW1k8ox59mdX2UKGgGR0BwsQ3o9s7/aAdNYAFoCEdAltao55qubXV9lChoBkdAcWXEHdGiH2gHTRYBaAhHQJbXHEXLvCx1fZQoaAZHQHDSKx5cC5poB00RAWgIR0CW1yxJNCZ4dX2UKGgGR0BwFHLB9Cu2aAdNOwFoCEdAltp/fwZwXXV9lChoBkdAbojrN4Z/C2gHTToBaAhHQJba/+GXXy11fZQoaAZHQHAMo4Ia99NoB01IAWgIR0CW3KPjXFtLdX2UKGgGR0BvyixmkFfRaAdNMwFoCEdAltzzu4PPLXV9lChoBkdAcC404BFNL2gHTTkBaAhHQJbdKoLofSx1fZQoaAZHQHBRFxbSqlxoB00uAWgIR0CW3xf8/D+BdX2UKGgGR0BgUovtdAxBaAdN6ANoCEdAlt/1pCa7VnV9lChoBkdAcCtPoFFDv2gHTT8BaAhHQJbg+3pfQa91fZQoaAZHQEzYlVLi++NoB0v+aAhHQJbhuciGFi91fZQoaAZHQHGC9zS1E3NoB01gAWgIR0CW4tukk8ifdX2UKGgGR0BxoYhQm/nGaAdNMwFoCEdAluRbPIGQjnV9lChoBkdAcGZJuVHFxWgHTTEBaAhHQJbk1rDZUUB1fZQoaAZHQHH2ypJf6XVoB00wAWgIR0CW5Waews5GdX2UKGgGR0BrjFLL6k6+aAdNJgFoCEdAluWlf/m1Y3V9lChoBkdAcAP09yLhrGgHTTEBaAhHQJblrIkqto11fZQoaAZHQHJNI0VJtixoB01VAWgIR0CW5vE6kqMFdX2UKGgGR0BugLcO9WZJaAdNNwFoCEdAlugo6GQCCHV9lChoBkdAcUfJWvKU3WgHTSABaAhHQJbpFhkRSP51fZQoaAZHQG8eoJ7b+LpoB00wAWgIR0CW6UIMSbpedX2UKGgGR0BwDoZhrnDBaAdNLQFoCEdAlulY6S1VpHV9lChoBkdAb8SLMs6JZWgHTV0BaAhHQJbppPhybQV1fZQoaAZHQG6CZR0lqrRoB00sAWgIR0CW6xaZQYUGdX2UKGgGR0Byg2TUy57PaAdNPQFoCEdAlush8YyftnV9lChoBkdAbtkQlKK51GgHTTQBaAhHQJbr29TP0I11fZQoaAZHQHIuGCAc1fpoB01DAWgIR0CW7MTkhib2dX2UKGgGR0Btd8zqKP4maAdNPAFoCEdAlu06f4AS4HV9lChoBkdAcfWgE2YOUmgHTR4BaAhHQJbtjjFQ2uR1fZQoaAZHQHIIgfQrtmdoB0v2aAhHQJbuaFVT72t1fZQoaAZHQHEvvaL4vexoB001AWgIR0CW7p1dgOSXdX2UKGgGR0BxgnRYzSCwaAdNVwFoCEdAlu71bmlqJ3V9lChoBkdAcmS7BwdbPmgHS/5oCEdAlu/KnNxEOXV9lChoBkdAcol7FsHjZWgHTVsBaAhHQJbv9UtI0651fZQoaAZHQG+p+H8CPp9oB01rAWgIR0CW8Gtv4ubrdX2UKGgGR0Bwf/QhOgxraAdNDAFoCEdAlvE6XF98Z3V9lChoBkdAcODfmcOLBWgHTTUBaAhHQJbyNklNUOx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |