pamixsun commited on
Commit
4bee0c2
1 Parent(s): 82a393e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md CHANGED
@@ -1,3 +1,95 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - image-segmentation
5
+ - vision
6
+ - fundus
7
+ - optic disc
8
+ - optic cup
9
+ widget:
10
+ - src: >-
11
+ https://huggingface.co/pamixsun/swinv2_tiny_for_glaucoma_classification/resolve/main/example.jpg
12
+ example_title: fundus image
13
  ---
14
+ # Model Card for Model ID
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+ This model utilizes a Swin Transformer architecture and has undergone supervised fine-tuning on retinal fundus images from the [REFUGE challenge dataset](https://refuge.grand-challenge.org/).
19
+ It is specialized in automated analysis of retinal fundus photographs for glaucoma detection.
20
+ By extracting hierarchical visual features from input fundus images in a cross-scale manner, the model is able to effectively categorize each image as either glaucoma or non-glaucoma. Extensive experiments demonstrate that this model architecture achieves state-of-the-art performance on the REFUGE benchmark for fundus image-based glaucoma classification.
21
+ To obtain optimal predictions, it is recommended to provide this model with standardized retinal fundus photographs captured using typical fundus imaging protocols.
22
+
23
+ ## Model Details
24
+
25
+ ### Model Description
26
+
27
+ <!-- Provide a longer summary of what this model is. -->
28
+
29
+ - **Developed by:** [Xu Sun](https://pamixsun.github.io)
30
+ - **Shared by:** [Xu Sun](https://pamixsun.github.io)
31
+ - **Model type:** Image classification
32
+ - **License:** Apache-2.0
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+
38
+ The pretrained model provides glaucoma classification functionality solely based on analysis of retinal fundus images.
39
+ You may directly utilize the raw model without modification to categorize fundus images as either glaucoma or non-glaucoma.
40
+ This model is specialized in extracting discriminative features from fundus images to identify glaucoma manifestations.
41
+ However, to achieve optimal performance, it is highly recommended to fine-tune the model on a representative fundus image dataset prior to deployment in real-world applications.
42
+
43
+ ## Bias, Risks, and Limitations
44
+
45
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
46
+
47
+ The model is specialized in analyzing retinal fundus images, and is trained exclusively on fundus image datasets to classify images as glaucoma or non-glaucoma.
48
+ Therefore, to obtain accurate predictions, it is crucial to only input fundus images when using this model.
49
+ Feeding other types of images may lead to meaningless results.
50
+ In summary, this model expects fundus images as input for glaucoma classification.
51
+ For the best performance, please adhere strictly to this input specification.
52
+
53
+ ## How to Get Started with the Model
54
+
55
+ Use the code below to get started with the model.
56
+
57
+ ```python
58
+ import cv2
59
+ import torch
60
+
61
+ from transformers import AutoImageProcessor, Swinv2ForImageClassification
62
+
63
+ image = cv2.imread('./example.jpg')
64
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
65
+
66
+ processor = AutoImageProcessor.from_pretrained("pamixsun/swinv2_tiny_for_glaucoma_classification")
67
+ model = Swinv2ForImageClassification.from_pretrained("pamixsun/swinv2_tiny_for_glaucoma_classification")
68
+
69
+ inputs = processor(image, return_tensors="pt")
70
+
71
+ with torch.no_grad():
72
+ logits = model(**inputs).logits
73
+
74
+ # model predicts either glaucoma or non-glaucoma.
75
+ predicted_label = logits.argmax(-1).item()
76
+ print(model.config.id2label[predicted_label])
77
+
78
+ ```
79
+
80
+ ## Citation [optional]
81
+
82
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
83
+
84
+ **BibTeX:**
85
+
86
+ [More Information Needed]
87
+
88
+ **APA:**
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ ## Model Card Contact
94
+
95
+ - pamixsun@gmail.com