File size: 3,150 Bytes
a657a13 c2d1a62 a657a13 c2d1a62 a657a13 c2d1a62 a657a13 0fe279d a657a13 c2d1a62 a657a13 0fe279d a657a13 0fe279d a657a13 0fe279d a657a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
library_name: peft
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
datasets:
- teknium/GPT4-LLM-Cleaned
model-index:
- name: llama-fr-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
adapter: lora
base_model: NousResearch/Llama-3.2-1B
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
eval_sample_packing: true
evals_per_epoch: 4
flash_attention: true
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: pandyamarut/llama-fr-lora
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_r: 16
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
loss_watchdog_patience: 3
loss_watchdog_threshold: 5
lr_scheduler: cosine
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
output_dir: /runpod-volume/fine-tuning/test-run
pad_to_sequence_len: true
run_name: test-run
runpod_job_id: dd327f42-5f67-4830-b512-4561fa9a3d45-u1
sample_packing: true
saves_per_epoch: 1
sequence_len: 2048
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
train_on_inputs: false
val_set_size: 0.1
wandb_entity: axo-test
wandb_name: test-run-1
wandb_project: test-run-1
warmup_steps: 10
weight_decay: 0
```
</details><br>
# llama-fr-lora
This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the teknium/GPT4-LLM-Cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1018
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4537 | 0.0009 | 1 | 1.3971 |
| 1.1978 | 0.2503 | 271 | 1.1561 |
| 1.1637 | 0.5007 | 542 | 1.1131 |
| 1.1894 | 0.7510 | 813 | 1.1018 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |