--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer datasets: - teknium/GPT4-LLM-Cleaned model-index: - name: llama-fr-lora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto dataset_prepared_path: last_run_prepared datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca eval_sample_packing: true evals_per_epoch: 4 flash_attention: true gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: pandyamarut/llama-fr-lora learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_r: 16 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj loss_watchdog_patience: 3 loss_watchdog_threshold: 5 lr_scheduler: cosine micro_batch_size: 2 num_epochs: 1 optimizer: adamw_8bit output_dir: /runpod-volume/fine-tuning/test-run pad_to_sequence_len: true run_name: test-run runpod_job_id: dd327f42-5f67-4830-b512-4561fa9a3d45-u1 sample_packing: true saves_per_epoch: 1 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false train_on_inputs: false val_set_size: 0.1 wandb_entity: axo-test wandb_name: test-run-1 wandb_project: test-run-1 warmup_steps: 10 weight_decay: 0 ```

# llama-fr-lora This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the teknium/GPT4-LLM-Cleaned dataset. It achieves the following results on the evaluation set: - Loss: 1.1018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4537 | 0.0009 | 1 | 1.3971 | | 1.1978 | 0.2503 | 271 | 1.1561 | | 1.1637 | 0.5007 | 542 | 1.1131 | | 1.1894 | 0.7510 | 813 | 1.1018 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0