--- language: - en license: llama3 library_name: transformers pipeline_tag: text2text-generation model-index: - name: orca_mini_v6_8b_dpo results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 38.83 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.48 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 5.51 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.82 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 9.26 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.85 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo name: Open LLM Leaderboard --- **Model Name: Llama 3 orca_mini_v6_8b_dpo** # Llama 3 orca_mini_v6_8b_dpo is trained with various DPO Datasets "Obsessed with GenAI's potential? So am I ! Let's create together 🚀 https://www.linkedin.com/in/pankajam"
### NOTICE By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. Dive in and innovate! ### Evaluation Coming Soon.. ### Example Usage Here is the ChatML prompt format ``` <|im_start|>system You are Orca Mini, a helpful AI assistant.<|im_end|> <|im_start|>user Hello Orca Mini, what can you do for me?<|im_end|> <|im_start|>assistant ``` Below shows a code example on how to use this model ```python from transformers import AutoModel, AutoTokenizer model_slug = "pankajmathur/orca_mini_v6_8b_dpo" model = AutoModel.from_pretrained(model_slug) tokenizer = AutoTokenizer.from_pretrained(model_slug) messages = [ {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."}, {"role": "user", "content": "Hello Orca Mini, what can you do for me?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") model.generate(**gen_input) ``` This model is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE) **Quants** GGUF : Coming Soon AWQ: Coming Soon # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pankajmathur__orca_mini_v6_8b_dpo) | Metric |Value| |-------------------|----:| |Avg. |20.29| |IFEval (0-Shot) |38.83| |BBH (3-Shot) |32.48| |MATH Lvl 5 (4-Shot)| 5.51| |GPQA (0-shot) | 6.82| |MuSR (0-shot) | 9.26| |MMLU-PRO (5-shot) |28.85| [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)