pankajmathur
commited on
Commit
•
a2a7c58
1
Parent(s):
72f92e1
Update README.md
Browse files
README.md
CHANGED
@@ -8,196 +8,110 @@ base_model:
|
|
8 |
- meta-llama/Llama-3.3-70B-Instruct
|
9 |
library_name: transformers
|
10 |
---
|
11 |
-
# Model Card for Model ID
|
12 |
|
13 |
-
orca_mini_v8_0_Llama-3.3-70B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
## Model Details
|
16 |
-
pankajmathur/orca_mini_v8_0_70b
|
17 |
|
18 |
-
### Model Description
|
19 |
-
|
20 |
-
<!-- Provide a longer summary of what this model is. -->
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Developed by:** [More Information Needed]
|
25 |
-
- **Funded by [optional]:** [More Information Needed]
|
26 |
-
- **Shared by [optional]:** [More Information Needed]
|
27 |
-
- **Model type:** [More Information Needed]
|
28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
-
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
-
|
40 |
-
## Uses
|
41 |
-
|
42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
43 |
-
|
44 |
-
### Direct Use
|
45 |
-
|
46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
### Out-of-Scope Use
|
57 |
-
|
58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
-
|
62 |
-
## Bias, Risks, and Limitations
|
63 |
-
|
64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Recommendations
|
69 |
-
|
70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
71 |
-
|
72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
73 |
-
|
74 |
-
## How to Get Started with the Model
|
75 |
-
|
76 |
-
Use the code below to get started with the model.
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
## Training Details
|
81 |
-
|
82 |
-
### Training Data
|
83 |
-
|
84 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
### Training Procedure
|
89 |
-
|
90 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
91 |
-
|
92 |
-
#### Preprocessing [optional]
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
-
|
97 |
-
#### Training Hyperparameters
|
98 |
-
|
99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
100 |
-
|
101 |
-
#### Speeds, Sizes, Times [optional]
|
102 |
-
|
103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
-
|
107 |
-
## Evaluation
|
108 |
-
|
109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
110 |
-
|
111 |
-
### Testing Data, Factors & Metrics
|
112 |
-
|
113 |
-
#### Testing Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Factors
|
120 |
-
|
121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
#### Metrics
|
126 |
-
|
127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
### Results
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
#### Summary
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
## Model Examination [optional]
|
140 |
-
|
141 |
-
<!-- Relevant interpretability work for the model goes here -->
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
## Environmental Impact
|
146 |
-
|
147 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
148 |
-
|
149 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
150 |
-
|
151 |
-
- **Hardware Type:** [More Information Needed]
|
152 |
-
- **Hours used:** [More Information Needed]
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
-
|
157 |
-
## Technical Specifications [optional]
|
158 |
-
|
159 |
-
### Model Architecture and Objective
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Compute Infrastructure
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Hardware
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
-
|
203 |
-
[More Information Needed]
|
|
|
8 |
- meta-llama/Llama-3.3-70B-Instruct
|
9 |
library_name: transformers
|
10 |
---
|
|
|
11 |
|
12 |
+
# Model Name: orca_mini_v8_0_Llama-3.3-70B-Instruct
|
13 |
+
|
14 |
+
**orca_mini_v8_0_Llama-3.3-70B-Instruct is trained with various SFT Datasets**
|
15 |
+
|
16 |
+
<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />
|
17 |
+
|
18 |
+
<strong>
|
19 |
+
Passionate about Generative AI? I help companies to privately train and deploy custom use case specific LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!
|
20 |
+
|
21 |
+
<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting!
|
22 |
+
</strong>
|
23 |
+
|
24 |
+
<br>
|
25 |
+
|
26 |
+
### NOTICE
|
27 |
+
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges.
|
28 |
+
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model.
|
29 |
+
Dive in and innovate!
|
30 |
+
|
31 |
+
|
32 |
+
### Example Usage
|
33 |
+
Here is the Llama3 prompt format
|
34 |
+
```
|
35 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
36 |
+
You are Orca Mini, a helpful AI assistant.<|eot_id|>
|
37 |
+
<|start_header_id|>user<|end_header_id|>
|
38 |
+
Hello Orca Mini, what can you do for me?<|eot_id|>
|
39 |
+
<|start_header_id|>assistant<|end_header_id|>
|
40 |
+
```
|
41 |
+
|
42 |
+
Below shows a code example on how to use this model in default(bf16) format
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import AutoModel, AutoTokenizer
|
46 |
+
model_slug = "pankajmathur/orca_mini_v8_0_70b"
|
47 |
+
model = AutoModel.from_pretrained(model_slug)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_slug)
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
51 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
52 |
+
]
|
53 |
+
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
54 |
+
model.generate(**gen_input)
|
55 |
+
```
|
56 |
+
|
57 |
+
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
61 |
+
model_slug = "pankajmathur/orca_mini_v8_0_70b"
|
62 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
63 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
model_slug, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_slug)
|
66 |
+
messages = [
|
67 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
68 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
69 |
+
]
|
70 |
+
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
71 |
+
quantized_model.generate(**gen_input)
|
72 |
+
```
|
73 |
+
|
74 |
+
Below shows a code example on how to do a tool use with this model and tranformer library, Since **orca_mini_v8_0_70b** based upon LLaMA-3.3 so it supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
|
75 |
+
|
76 |
+
Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
|
77 |
+
Here is a quick example showing a single simple tool:
|
78 |
+
|
79 |
+
```python
|
80 |
+
# First, define a tool
|
81 |
+
def get_current_temperature(location: str) -> float:
|
82 |
+
"""
|
83 |
+
Get the current temperature at a location.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
location: The location to get the temperature for, in the format "City, Country"
|
87 |
+
Returns:
|
88 |
+
The current temperature at the specified location in the specified units, as a float.
|
89 |
+
"""
|
90 |
+
return 22. # A real function should probably actually get the temperature!
|
91 |
+
|
92 |
+
# Next, create a chat and apply the chat template
|
93 |
+
messages = [
|
94 |
+
{"role": "system", "content": "You are a bot that responds to weather queries."},
|
95 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
96 |
+
]
|
97 |
+
|
98 |
+
inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
99 |
+
```
|
100 |
+
|
101 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
102 |
+
|
103 |
+
```python
|
104 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
105 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
106 |
+
```
|
107 |
+
|
108 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
109 |
+
|
110 |
+
```python
|
111 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
112 |
+
```
|
113 |
+
|
114 |
+
After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
|
115 |
+
see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
|
116 |
|
|
|
|
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|