pankajmathur
commited on
Commit
•
8f2fb13
1
Parent(s):
54fedfc
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.3
|
3 |
+
datasets:
|
4 |
+
- pankajmathur/orca_mini_v1_dataset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Name: orca_mini_v8_1_Llama-3.3-70B-Instruct
|
13 |
+
|
14 |
+
**orca_mini_v8_1_Llama-3.3-70B-Instruct is trained with various SFT Datasets**
|
15 |
+
|
16 |
+
<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />
|
17 |
+
|
18 |
+
<strong>
|
19 |
+
Passionate about Generative AI? I help companies to privately train and deploy custom use case specific LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!
|
20 |
+
|
21 |
+
<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting!
|
22 |
+
</strong>
|
23 |
+
|
24 |
+
<br>
|
25 |
+
|
26 |
+
### NOTICE
|
27 |
+
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges.
|
28 |
+
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model.
|
29 |
+
Dive in and innovate!
|
30 |
+
|
31 |
+
|
32 |
+
### Example Usage
|
33 |
+
Here is the Llama3 prompt format
|
34 |
+
```
|
35 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
36 |
+
You are Orca Mini, a helpful AI assistant.<|eot_id|>
|
37 |
+
<|start_header_id|>user<|end_header_id|>
|
38 |
+
Hello Orca Mini, what can you do for me?<|eot_id|>
|
39 |
+
<|start_header_id|>assistant<|end_header_id|>
|
40 |
+
```
|
41 |
+
|
42 |
+
Below shows a code example on how to use this model in default(bf16) format
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import AutoModel, AutoTokenizer
|
46 |
+
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
47 |
+
model = AutoModel.from_pretrained(model_slug)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_slug)
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
51 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
52 |
+
]
|
53 |
+
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
54 |
+
model.generate(**gen_input)
|
55 |
+
```
|
56 |
+
|
57 |
+
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
61 |
+
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
62 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
63 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
model_slug, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_slug)
|
66 |
+
messages = [
|
67 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
68 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
69 |
+
]
|
70 |
+
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
71 |
+
quantized_model.generate(**gen_input)
|
72 |
+
```
|
73 |
+
|
74 |
+
Below shows a code example on how to do a tool use with this model and tranformer library, Since **orca_mini_v8_0_70b** based upon LLaMA-3.3 so it supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
|
75 |
+
|
76 |
+
Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
|
77 |
+
Here is a quick example showing a single simple tool:
|
78 |
+
|
79 |
+
```python
|
80 |
+
# First, define a tool
|
81 |
+
def get_current_temperature(location: str) -> float:
|
82 |
+
"""
|
83 |
+
Get the current temperature at a location.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
location: The location to get the temperature for, in the format "City, Country"
|
87 |
+
Returns:
|
88 |
+
The current temperature at the specified location in the specified units, as a float.
|
89 |
+
"""
|
90 |
+
return 22. # A real function should probably actually get the temperature!
|
91 |
+
|
92 |
+
# Next, create a chat and apply the chat template
|
93 |
+
messages = [
|
94 |
+
{"role": "system", "content": "You are a bot that responds to weather queries."},
|
95 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
96 |
+
]
|
97 |
+
|
98 |
+
inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
99 |
+
```
|
100 |
+
|
101 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
102 |
+
|
103 |
+
```python
|
104 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
105 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
106 |
+
```
|
107 |
+
|
108 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
109 |
+
|
110 |
+
```python
|
111 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
112 |
+
```
|
113 |
+
|
114 |
+
After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
|
115 |
+
see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
|
116 |
+
|
117 |
+
|