--- license: llama3.3 datasets: - pankajmathur/orca_mini_v1_dataset language: - en base_model: - meta-llama/Llama-3.3-70B-Instruct library_name: transformers --- # Model Name: Orca_Mini_v8_1_Llama-3.3-70B-Instruct **Orca_Mini_v8_1_Llama-3.3-70B-Instruct is trained with various SFT Datasets on [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)** Passionate about Generative AI? I help companies to privately train and deploy custom use case specific LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat! https://www.linkedin.com/in/pankajam Looking forward to connecting!
### NOTICE By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. Dive in and innovate! ### Example Usage Here is the Llama3 prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> You are Orca Mini, a helpful AI assistant.<|eot_id|> <|start_header_id|>user<|end_header_id|> Hello Orca Mini, what can you do for me?<|eot_id|> <|start_header_id|>assistant<|end_header_id|> ``` Below shows a code example on how to use this model in default(bf16) format ```python from transformers import AutoModel, AutoTokenizer model_slug = "pankajmathur/orca_mini_v8_1_70b" model = AutoModel.from_pretrained(model_slug) tokenizer = AutoTokenizer.from_pretrained(model_slug) messages = [ {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."}, {"role": "user", "content": "Hello Orca Mini, what can you do for me?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") model.generate(**gen_input) ``` Below shows a code example on how to use this model in 4-bit format via bitsandbytes library ```python from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig model_slug = "pankajmathur/orca_mini_v8_1_70b" quantization_config = BitsAndBytesConfig(load_in_4bit=True) quantized_model = AutoModelForCausalLM.from_pretrained( model_slug, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_slug) messages = [ {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."}, {"role": "user", "content": "Hello Orca Mini, what can you do for me?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") quantized_model.generate(**gen_input) ``` Below shows a code example on how to do a tool use with this model and tranformer library Since **orca_mini_v8_1_70b** is based upon LLaMA-3.3, it supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/). Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers. Here is a quick example showing a single simple tool: ```python # First, define a tool def get_current_temperature(location: str) -> float: """ Get the current temperature at a location. Args: location: The location to get the temperature for, in the format "City, Country" Returns: The current temperature at the specified location in the specified units, as a float. """ return 22. # A real function should probably actually get the temperature! # Next, create a chat and apply the chat template messages = [ {"role": "system", "content": "You are a bot that responds to weather queries."}, {"role": "user", "content": "Hey, what's the temperature in Paris right now?"} ] inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True) ``` You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so: ```python tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}} messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]}) ``` and then call the tool and append the result, with the `tool` role, like so: ```python messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"}) ``` After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information, see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).