pankajrajdeo
commited on
Add special tokens [TEXT], [YEAR_RANGE]
Browse files- 1_Pooling/config.json +10 -0
- README.md +1301 -0
- added_tokens.json +4 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +53 -0
- tokenizer.json +0 -0
- tokenizer_config.json +85 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:187491593
|
10 |
+
- loss:CustomTripletLoss
|
11 |
+
widget:
|
12 |
+
- source_sentence: Hylocharis xantusii
|
13 |
+
sentences:
|
14 |
+
- Xantus's hummingbird
|
15 |
+
- C5721346
|
16 |
+
- C1623532
|
17 |
+
- Iole viridescens viridescens
|
18 |
+
- source_sentence: HTLV1+2 RNA XXX Ql PCR
|
19 |
+
sentences:
|
20 |
+
- HTLV 1+2 RNA:MevcEşik:Zmlı:XXX:Srl:Prob.amf.hdf
|
21 |
+
- Nota de progreso:Tipo:Punto temporal:{Configuración}:Documento:Pain medicine
|
22 |
+
- C0368469
|
23 |
+
- C4070921
|
24 |
+
- source_sentence: Degeneração Nigroestriatal
|
25 |
+
sentences:
|
26 |
+
- C0270733
|
27 |
+
- >-
|
28 |
+
hiperinsulinismo debido a deficiencia de 3-hidroxiacil-coenzima A
|
29 |
+
deshidrogenasa de cadena corta
|
30 |
+
- Striatonigral atrophy
|
31 |
+
- C4303473
|
32 |
+
- source_sentence: Clostridioides difficile As:titer:moment:serum:semikwantitatief
|
33 |
+
sentences:
|
34 |
+
- Dehidroepiandrosteron:MevcEşik:Zmlı:İdrar:Srl
|
35 |
+
- C0485219
|
36 |
+
- C0364328
|
37 |
+
- Clostridium difficile Ac:Título:Pt:Soro:Qn
|
38 |
+
- source_sentence: E Vicotrat
|
39 |
+
sentences:
|
40 |
+
- C2742706
|
41 |
+
- C2350910
|
42 |
+
- germanium L-cysteine alpha-tocopherol complex
|
43 |
+
- Eosine I Bluish, Dipotassium Salt
|
44 |
+
base_model:
|
45 |
+
- pankajrajdeo/UMLS-ED-Bioformer-16L-V-1
|
46 |
+
---
|
47 |
+
|
48 |
+
# SentenceTransformer
|
49 |
+
|
50 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
51 |
+
|
52 |
+
## Model Details
|
53 |
+
|
54 |
+
### Model Description
|
55 |
+
- **Model Type:** Sentence Transformer
|
56 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
57 |
+
- **Maximum Sequence Length:** 1024 tokens
|
58 |
+
- **Output Dimensionality:** 384 tokens
|
59 |
+
- **Similarity Function:** Cosine Similarity
|
60 |
+
<!-- - **Training Dataset:** Unknown -->
|
61 |
+
<!-- - **Language:** Unknown -->
|
62 |
+
<!-- - **License:** Unknown -->
|
63 |
+
|
64 |
+
### Model Sources
|
65 |
+
|
66 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
67 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
68 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
69 |
+
|
70 |
+
### Full Model Architecture
|
71 |
+
|
72 |
+
```
|
73 |
+
SentenceTransformer(
|
74 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
|
75 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
76 |
+
)
|
77 |
+
```
|
78 |
+
|
79 |
+
## Usage
|
80 |
+
|
81 |
+
### Direct Usage (Sentence Transformers)
|
82 |
+
|
83 |
+
First install the Sentence Transformers library:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install -U sentence-transformers
|
87 |
+
```
|
88 |
+
|
89 |
+
Then you can load this model and run inference.
|
90 |
+
```python
|
91 |
+
from sentence_transformers import SentenceTransformer
|
92 |
+
|
93 |
+
# Download from the 🤗 Hub
|
94 |
+
model = SentenceTransformer("pankajrajdeo/937457_bioformer_16L")
|
95 |
+
# Run inference
|
96 |
+
sentences = [
|
97 |
+
'E Vicotrat',
|
98 |
+
'Eosine I Bluish, Dipotassium Salt',
|
99 |
+
'C2742706',
|
100 |
+
]
|
101 |
+
embeddings = model.encode(sentences)
|
102 |
+
print(embeddings.shape)
|
103 |
+
# [3, 384]
|
104 |
+
|
105 |
+
# Get the similarity scores for the embeddings
|
106 |
+
similarities = model.similarity(embeddings, embeddings)
|
107 |
+
print(similarities.shape)
|
108 |
+
# [3, 3]
|
109 |
+
```
|
110 |
+
|
111 |
+
<!--
|
112 |
+
### Direct Usage (Transformers)
|
113 |
+
|
114 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
115 |
+
|
116 |
+
</details>
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Downstream Usage (Sentence Transformers)
|
121 |
+
|
122 |
+
You can finetune this model on your own dataset.
|
123 |
+
|
124 |
+
<details><summary>Click to expand</summary>
|
125 |
+
|
126 |
+
</details>
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
### Out-of-Scope Use
|
131 |
+
|
132 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
## Bias, Risks and Limitations
|
137 |
+
|
138 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
### Recommendations
|
143 |
+
|
144 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
## Training Details
|
148 |
+
|
149 |
+
### Training Dataset
|
150 |
+
|
151 |
+
#### Unnamed Dataset
|
152 |
+
|
153 |
+
|
154 |
+
* Size: 187,491,593 training samples
|
155 |
+
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_id</code>, <code>positive_id</code>, and <code>negative</code>
|
156 |
+
* Approximate statistics based on the first 1000 samples:
|
157 |
+
| | anchor | positive | negative_id | positive_id | negative |
|
158 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
159 |
+
| type | string | string | string | string | string |
|
160 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 13.27 tokens</li><li>max: 247 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.25 tokens</li><li>max: 157 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 6.27 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 6.49 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.53 tokens</li><li>max: 118 tokens</li></ul> |
|
161 |
+
* Samples:
|
162 |
+
| anchor | positive | negative_id | positive_id | negative |
|
163 |
+
|:----------------------------------------------|:------------------------------------------------------------------------------------------------|:----------------------|:----------------------|:------------------------------------------------------------------------------------------------|
|
164 |
+
| <code>Zaburzenie metabolizmu minerałów</code> | <code>Distúrbio não especificado do metabolismo de minerais</code> | <code>C2887914</code> | <code>C0154260</code> | <code>Acute alcoholic hepatic failure</code> |
|
165 |
+
| <code>testy funkčnosti placenty</code> | <code>Metoder som brukes til å vurdere morkakefunksjon.</code> | <code>C2350391</code> | <code>C0032049</code> | <code>Hjärtmuskelscintigrafi</code> |
|
166 |
+
| <code>Tsefapiriin:Susc:Pt:Is:OrdQn</code> | <code>cefapirina:susceptibilidad:punto en el tiempo:cepa clínica:ordinal o cuantitativo:</code> | <code>C0942365</code> | <code>C0801894</code> | <code>2 proyecciones:hallazgo:punto en el tiempo:tobillo.izquierdo:Narrativo:radiografía</code> |
|
167 |
+
* Loss: <code>__main__.CustomTripletLoss</code> with these parameters:
|
168 |
+
```json
|
169 |
+
{
|
170 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
171 |
+
"triplet_margin": 5
|
172 |
+
}
|
173 |
+
```
|
174 |
+
|
175 |
+
### Training Hyperparameters
|
176 |
+
#### Non-Default Hyperparameters
|
177 |
+
|
178 |
+
- `per_device_train_batch_size`: 50
|
179 |
+
- `learning_rate`: 2e-05
|
180 |
+
- `num_train_epochs`: 5
|
181 |
+
- `warmup_ratio`: 0.1
|
182 |
+
- `fp16`: True
|
183 |
+
|
184 |
+
#### All Hyperparameters
|
185 |
+
<details><summary>Click to expand</summary>
|
186 |
+
|
187 |
+
- `overwrite_output_dir`: False
|
188 |
+
- `do_predict`: False
|
189 |
+
- `eval_strategy`: no
|
190 |
+
- `prediction_loss_only`: True
|
191 |
+
- `per_device_train_batch_size`: 50
|
192 |
+
- `per_device_eval_batch_size`: 8
|
193 |
+
- `per_gpu_train_batch_size`: None
|
194 |
+
- `per_gpu_eval_batch_size`: None
|
195 |
+
- `gradient_accumulation_steps`: 1
|
196 |
+
- `eval_accumulation_steps`: None
|
197 |
+
- `torch_empty_cache_steps`: None
|
198 |
+
- `learning_rate`: 2e-05
|
199 |
+
- `weight_decay`: 0.0
|
200 |
+
- `adam_beta1`: 0.9
|
201 |
+
- `adam_beta2`: 0.999
|
202 |
+
- `adam_epsilon`: 1e-08
|
203 |
+
- `max_grad_norm`: 1.0
|
204 |
+
- `num_train_epochs`: 5
|
205 |
+
- `max_steps`: -1
|
206 |
+
- `lr_scheduler_type`: linear
|
207 |
+
- `lr_scheduler_kwargs`: {}
|
208 |
+
- `warmup_ratio`: 0.1
|
209 |
+
- `warmup_steps`: 0
|
210 |
+
- `log_level`: passive
|
211 |
+
- `log_level_replica`: warning
|
212 |
+
- `log_on_each_node`: True
|
213 |
+
- `logging_nan_inf_filter`: True
|
214 |
+
- `save_safetensors`: True
|
215 |
+
- `save_on_each_node`: False
|
216 |
+
- `save_only_model`: False
|
217 |
+
- `restore_callback_states_from_checkpoint`: False
|
218 |
+
- `no_cuda`: False
|
219 |
+
- `use_cpu`: False
|
220 |
+
- `use_mps_device`: False
|
221 |
+
- `seed`: 42
|
222 |
+
- `data_seed`: None
|
223 |
+
- `jit_mode_eval`: False
|
224 |
+
- `use_ipex`: False
|
225 |
+
- `bf16`: False
|
226 |
+
- `fp16`: True
|
227 |
+
- `fp16_opt_level`: O1
|
228 |
+
- `half_precision_backend`: auto
|
229 |
+
- `bf16_full_eval`: False
|
230 |
+
- `fp16_full_eval`: False
|
231 |
+
- `tf32`: None
|
232 |
+
- `local_rank`: 0
|
233 |
+
- `ddp_backend`: None
|
234 |
+
- `tpu_num_cores`: None
|
235 |
+
- `tpu_metrics_debug`: False
|
236 |
+
- `debug`: []
|
237 |
+
- `dataloader_drop_last`: False
|
238 |
+
- `dataloader_num_workers`: 0
|
239 |
+
- `dataloader_prefetch_factor`: None
|
240 |
+
- `past_index`: -1
|
241 |
+
- `disable_tqdm`: False
|
242 |
+
- `remove_unused_columns`: True
|
243 |
+
- `label_names`: None
|
244 |
+
- `load_best_model_at_end`: False
|
245 |
+
- `ignore_data_skip`: False
|
246 |
+
- `fsdp`: []
|
247 |
+
- `fsdp_min_num_params`: 0
|
248 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
249 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
250 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
251 |
+
- `deepspeed`: None
|
252 |
+
- `label_smoothing_factor`: 0.0
|
253 |
+
- `optim`: adamw_torch
|
254 |
+
- `optim_args`: None
|
255 |
+
- `adafactor`: False
|
256 |
+
- `group_by_length`: False
|
257 |
+
- `length_column_name`: length
|
258 |
+
- `ddp_find_unused_parameters`: None
|
259 |
+
- `ddp_bucket_cap_mb`: None
|
260 |
+
- `ddp_broadcast_buffers`: False
|
261 |
+
- `dataloader_pin_memory`: True
|
262 |
+
- `dataloader_persistent_workers`: False
|
263 |
+
- `skip_memory_metrics`: True
|
264 |
+
- `use_legacy_prediction_loop`: False
|
265 |
+
- `push_to_hub`: False
|
266 |
+
- `resume_from_checkpoint`: None
|
267 |
+
- `hub_model_id`: None
|
268 |
+
- `hub_strategy`: every_save
|
269 |
+
- `hub_private_repo`: False
|
270 |
+
- `hub_always_push`: False
|
271 |
+
- `gradient_checkpointing`: False
|
272 |
+
- `gradient_checkpointing_kwargs`: None
|
273 |
+
- `include_inputs_for_metrics`: False
|
274 |
+
- `eval_do_concat_batches`: True
|
275 |
+
- `fp16_backend`: auto
|
276 |
+
- `push_to_hub_model_id`: None
|
277 |
+
- `push_to_hub_organization`: None
|
278 |
+
- `mp_parameters`:
|
279 |
+
- `auto_find_batch_size`: False
|
280 |
+
- `full_determinism`: False
|
281 |
+
- `torchdynamo`: None
|
282 |
+
- `ray_scope`: last
|
283 |
+
- `ddp_timeout`: 1800
|
284 |
+
- `torch_compile`: False
|
285 |
+
- `torch_compile_backend`: None
|
286 |
+
- `torch_compile_mode`: None
|
287 |
+
- `dispatch_batches`: None
|
288 |
+
- `split_batches`: None
|
289 |
+
- `include_tokens_per_second`: False
|
290 |
+
- `include_num_input_tokens_seen`: False
|
291 |
+
- `neftune_noise_alpha`: None
|
292 |
+
- `optim_target_modules`: None
|
293 |
+
- `batch_eval_metrics`: False
|
294 |
+
- `eval_on_start`: False
|
295 |
+
- `use_liger_kernel`: False
|
296 |
+
- `eval_use_gather_object`: False
|
297 |
+
- `batch_sampler`: batch_sampler
|
298 |
+
- `multi_dataset_batch_sampler`: proportional
|
299 |
+
|
300 |
+
</details>
|
301 |
+
|
302 |
+
### Training Logs
|
303 |
+
<details><summary>Click to expand</summary>
|
304 |
+
|
305 |
+
| Epoch | Step | Training Loss |
|
306 |
+
|:------:|:------:|:-------------:|
|
307 |
+
| 0.0003 | 1000 | 1.0069 |
|
308 |
+
| 0.0005 | 2000 | 0.9728 |
|
309 |
+
| 0.0008 | 3000 | 0.9549 |
|
310 |
+
| 0.0011 | 4000 | 0.9217 |
|
311 |
+
| 0.0013 | 5000 | 0.9116 |
|
312 |
+
| 0.0016 | 6000 | 0.8662 |
|
313 |
+
| 0.0019 | 7000 | 0.8412 |
|
314 |
+
| 0.0021 | 8000 | 0.7979 |
|
315 |
+
| 0.0024 | 9000 | 0.7829 |
|
316 |
+
| 0.0027 | 10000 | 0.7578 |
|
317 |
+
| 0.0029 | 11000 | 0.7402 |
|
318 |
+
| 0.0032 | 12000 | 0.7069 |
|
319 |
+
| 0.0035 | 13000 | 0.6906 |
|
320 |
+
| 0.0037 | 14000 | 0.6644 |
|
321 |
+
| 0.0040 | 15000 | 0.6516 |
|
322 |
+
| 0.0043 | 16000 | 0.6344 |
|
323 |
+
| 0.0045 | 17000 | 0.6395 |
|
324 |
+
| 0.0048 | 18000 | 0.6082 |
|
325 |
+
| 0.0051 | 19000 | 0.5944 |
|
326 |
+
| 0.0053 | 20000 | 0.5955 |
|
327 |
+
| 0.0056 | 21000 | 0.576 |
|
328 |
+
| 0.0059 | 22000 | 0.5723 |
|
329 |
+
| 0.0061 | 23000 | 0.5475 |
|
330 |
+
| 0.0064 | 24000 | 0.5452 |
|
331 |
+
| 0.0067 | 25000 | 0.5485 |
|
332 |
+
| 0.0069 | 26000 | 0.5143 |
|
333 |
+
| 0.0072 | 27000 | 0.5062 |
|
334 |
+
| 0.0075 | 28000 | 0.5118 |
|
335 |
+
| 0.0077 | 29000 | 0.4992 |
|
336 |
+
| 0.0080 | 30000 | 0.5031 |
|
337 |
+
| 0.0083 | 31000 | 0.4762 |
|
338 |
+
| 0.0085 | 32000 | 0.4773 |
|
339 |
+
| 0.0088 | 33000 | 0.4742 |
|
340 |
+
| 0.0091 | 34000 | 0.4692 |
|
341 |
+
| 0.0093 | 35000 | 0.464 |
|
342 |
+
| 0.0096 | 36000 | 0.4687 |
|
343 |
+
| 0.0099 | 37000 | 0.4592 |
|
344 |
+
| 0.0101 | 38000 | 0.4468 |
|
345 |
+
| 0.0104 | 39000 | 0.4425 |
|
346 |
+
| 0.0107 | 40000 | 0.4477 |
|
347 |
+
| 0.0109 | 41000 | 0.4336 |
|
348 |
+
| 0.0112 | 42000 | 0.4331 |
|
349 |
+
| 0.0115 | 43000 | 0.4248 |
|
350 |
+
| 0.0117 | 44000 | 0.4189 |
|
351 |
+
| 0.0120 | 45000 | 0.4147 |
|
352 |
+
| 0.0123 | 46000 | 0.4112 |
|
353 |
+
| 0.0125 | 47000 | 0.4051 |
|
354 |
+
| 0.0128 | 48000 | 0.399 |
|
355 |
+
| 0.0131 | 49000 | 0.3921 |
|
356 |
+
| 0.0133 | 50000 | 0.3917 |
|
357 |
+
| 0.0136 | 51000 | 0.4058 |
|
358 |
+
| 0.0139 | 52000 | 0.3843 |
|
359 |
+
| 0.0141 | 53000 | 0.3811 |
|
360 |
+
| 0.0144 | 54000 | 0.3733 |
|
361 |
+
| 0.0147 | 55000 | 0.3787 |
|
362 |
+
| 0.0149 | 56000 | 0.3859 |
|
363 |
+
| 0.0152 | 57000 | 0.3742 |
|
364 |
+
| 0.0155 | 58000 | 0.3682 |
|
365 |
+
| 0.0157 | 59000 | 0.3705 |
|
366 |
+
| 0.0160 | 60000 | 0.3483 |
|
367 |
+
| 0.0163 | 61000 | 0.3469 |
|
368 |
+
| 0.0165 | 62000 | 0.3586 |
|
369 |
+
| 0.0168 | 63000 | 0.3346 |
|
370 |
+
| 0.0171 | 64000 | 0.3474 |
|
371 |
+
| 0.0173 | 65000 | 0.3625 |
|
372 |
+
| 0.0176 | 66000 | 0.3501 |
|
373 |
+
| 0.0179 | 67000 | 0.3456 |
|
374 |
+
| 0.0181 | 68000 | 0.3383 |
|
375 |
+
| 0.0184 | 69000 | 0.3457 |
|
376 |
+
| 0.0187 | 70000 | 0.3437 |
|
377 |
+
| 0.0189 | 71000 | 0.3395 |
|
378 |
+
| 0.0192 | 72000 | 0.3399 |
|
379 |
+
| 0.0195 | 73000 | 0.324 |
|
380 |
+
| 0.0197 | 74000 | 0.338 |
|
381 |
+
| 0.0200 | 75000 | 0.3268 |
|
382 |
+
| 0.0203 | 76000 | 0.3298 |
|
383 |
+
| 0.0205 | 77000 | 0.3282 |
|
384 |
+
| 0.0208 | 78000 | 0.3356 |
|
385 |
+
| 0.0211 | 79000 | 0.3187 |
|
386 |
+
| 0.0213 | 80000 | 0.3155 |
|
387 |
+
| 0.0216 | 81000 | 0.3181 |
|
388 |
+
| 0.0219 | 82000 | 0.3085 |
|
389 |
+
| 0.0221 | 83000 | 0.3168 |
|
390 |
+
| 0.0224 | 84000 | 0.3162 |
|
391 |
+
| 0.0227 | 85000 | 0.3126 |
|
392 |
+
| 0.0229 | 86000 | 0.3026 |
|
393 |
+
| 0.0232 | 87000 | 0.3017 |
|
394 |
+
| 0.0235 | 88000 | 0.2963 |
|
395 |
+
| 0.0237 | 89000 | 0.3002 |
|
396 |
+
| 0.0240 | 90000 | 0.297 |
|
397 |
+
| 0.0243 | 91000 | 0.2993 |
|
398 |
+
| 0.0245 | 92000 | 0.306 |
|
399 |
+
| 0.0248 | 93000 | 0.2964 |
|
400 |
+
| 0.0251 | 94000 | 0.2992 |
|
401 |
+
| 0.0253 | 95000 | 0.2921 |
|
402 |
+
| 0.0256 | 96000 | 0.3103 |
|
403 |
+
| 0.0259 | 97000 | 0.2897 |
|
404 |
+
| 0.0261 | 98000 | 0.2843 |
|
405 |
+
| 0.0264 | 99000 | 0.2914 |
|
406 |
+
| 0.0267 | 100000 | 0.2952 |
|
407 |
+
| 0.0269 | 101000 | 0.2922 |
|
408 |
+
| 0.0272 | 102000 | 0.2807 |
|
409 |
+
| 0.0275 | 103000 | 0.2797 |
|
410 |
+
| 0.0277 | 104000 | 0.2849 |
|
411 |
+
| 0.0280 | 105000 | 0.2959 |
|
412 |
+
| 0.0283 | 106000 | 0.2823 |
|
413 |
+
| 0.0285 | 107000 | 0.2637 |
|
414 |
+
| 0.0288 | 108000 | 0.2804 |
|
415 |
+
| 0.0291 | 109000 | 0.2761 |
|
416 |
+
| 0.0293 | 110000 | 0.2821 |
|
417 |
+
| 0.0296 | 111000 | 0.2876 |
|
418 |
+
| 0.0299 | 112000 | 0.2699 |
|
419 |
+
| 0.0301 | 113000 | 0.2758 |
|
420 |
+
| 0.0304 | 114000 | 0.2802 |
|
421 |
+
| 0.0307 | 115000 | 0.2689 |
|
422 |
+
| 0.0309 | 116000 | 0.2871 |
|
423 |
+
| 0.0312 | 117000 | 0.2603 |
|
424 |
+
| 0.0315 | 118000 | 0.2728 |
|
425 |
+
| 0.0317 | 119000 | 0.2769 |
|
426 |
+
| 0.0320 | 120000 | 0.2527 |
|
427 |
+
| 0.0323 | 121000 | 0.2677 |
|
428 |
+
| 0.0325 | 122000 | 0.2748 |
|
429 |
+
| 0.0328 | 123000 | 0.2648 |
|
430 |
+
| 0.0331 | 124000 | 0.2645 |
|
431 |
+
| 0.0333 | 125000 | 0.2637 |
|
432 |
+
| 0.0336 | 126000 | 0.2613 |
|
433 |
+
| 0.0339 | 127000 | 0.261 |
|
434 |
+
| 0.0341 | 128000 | 0.2568 |
|
435 |
+
| 0.0344 | 129000 | 0.2611 |
|
436 |
+
| 0.0347 | 130000 | 0.2486 |
|
437 |
+
| 0.0349 | 131000 | 0.2535 |
|
438 |
+
| 0.0352 | 132000 | 0.2525 |
|
439 |
+
| 0.0355 | 133000 | 0.2457 |
|
440 |
+
| 0.0357 | 134000 | 0.2545 |
|
441 |
+
| 0.0360 | 135000 | 0.2596 |
|
442 |
+
| 0.0363 | 136000 | 0.2505 |
|
443 |
+
| 0.0365 | 137000 | 0.2454 |
|
444 |
+
| 0.0368 | 138000 | 0.2696 |
|
445 |
+
| 0.0371 | 139000 | 0.2567 |
|
446 |
+
| 0.0373 | 140000 | 0.2517 |
|
447 |
+
| 0.0376 | 141000 | 0.2436 |
|
448 |
+
| 0.0379 | 142000 | 0.2452 |
|
449 |
+
| 0.0381 | 143000 | 0.2427 |
|
450 |
+
| 0.0384 | 144000 | 0.2525 |
|
451 |
+
| 0.0387 | 145000 | 0.243 |
|
452 |
+
| 0.0389 | 146000 | 0.2417 |
|
453 |
+
| 0.0392 | 147000 | 0.2599 |
|
454 |
+
| 0.0395 | 148000 | 0.246 |
|
455 |
+
| 0.0397 | 149000 | 0.2379 |
|
456 |
+
| 0.0400 | 150000 | 0.2449 |
|
457 |
+
| 0.0403 | 151000 | 0.2333 |
|
458 |
+
| 0.0405 | 152000 | 0.2399 |
|
459 |
+
| 0.0408 | 153000 | 0.2409 |
|
460 |
+
| 0.0411 | 154000 | 0.2407 |
|
461 |
+
| 0.0413 | 155000 | 0.2369 |
|
462 |
+
| 0.0416 | 156000 | 0.2361 |
|
463 |
+
| 0.0419 | 157000 | 0.2331 |
|
464 |
+
| 0.0421 | 158000 | 0.232 |
|
465 |
+
| 0.0424 | 159000 | 0.2337 |
|
466 |
+
| 0.0427 | 160000 | 0.2331 |
|
467 |
+
| 0.0429 | 161000 | 0.2328 |
|
468 |
+
| 0.0432 | 162000 | 0.2278 |
|
469 |
+
| 0.0435 | 163000 | 0.2335 |
|
470 |
+
| 0.0437 | 164000 | 0.2301 |
|
471 |
+
| 0.0440 | 165000 | 0.2381 |
|
472 |
+
| 0.0443 | 166000 | 0.2298 |
|
473 |
+
| 0.0445 | 167000 | 0.2355 |
|
474 |
+
| 0.0448 | 168000 | 0.2254 |
|
475 |
+
| 0.0451 | 169000 | 0.2301 |
|
476 |
+
| 0.0453 | 170000 | 0.2319 |
|
477 |
+
| 0.0456 | 171000 | 0.2314 |
|
478 |
+
| 0.0459 | 172000 | 0.236 |
|
479 |
+
| 0.0461 | 173000 | 0.2348 |
|
480 |
+
| 0.0464 | 174000 | 0.231 |
|
481 |
+
| 0.0467 | 175000 | 0.2291 |
|
482 |
+
| 0.0469 | 176000 | 0.2246 |
|
483 |
+
| 0.0472 | 177000 | 0.2259 |
|
484 |
+
| 0.0475 | 178000 | 0.2254 |
|
485 |
+
| 0.0477 | 179000 | 0.2223 |
|
486 |
+
| 0.0480 | 180000 | 0.2285 |
|
487 |
+
| 0.0483 | 181000 | 0.2306 |
|
488 |
+
| 0.0485 | 182000 | 0.2233 |
|
489 |
+
| 0.0488 | 183000 | 0.2117 |
|
490 |
+
| 0.0491 | 184000 | 0.2219 |
|
491 |
+
| 0.0493 | 185000 | 0.2226 |
|
492 |
+
| 0.0496 | 186000 | 0.2161 |
|
493 |
+
| 0.0499 | 187000 | 0.2195 |
|
494 |
+
| 0.0501 | 188000 | 0.2208 |
|
495 |
+
| 0.0504 | 189000 | 0.2198 |
|
496 |
+
| 0.0507 | 190000 | 0.2236 |
|
497 |
+
| 0.0509 | 191000 | 0.2178 |
|
498 |
+
| 0.0512 | 192000 | 0.2087 |
|
499 |
+
| 0.0515 | 193000 | 0.2222 |
|
500 |
+
| 0.0517 | 194000 | 0.211 |
|
501 |
+
| 0.0520 | 195000 | 0.2287 |
|
502 |
+
| 0.0523 | 196000 | 0.2219 |
|
503 |
+
| 0.0525 | 197000 | 0.2096 |
|
504 |
+
| 0.0528 | 198000 | 0.2112 |
|
505 |
+
| 0.0531 | 199000 | 0.2108 |
|
506 |
+
| 0.0533 | 200000 | 0.2098 |
|
507 |
+
| 0.0536 | 201000 | 0.2176 |
|
508 |
+
| 0.0539 | 202000 | 0.2118 |
|
509 |
+
| 0.0541 | 203000 | 0.2248 |
|
510 |
+
| 0.0544 | 204000 | 0.2124 |
|
511 |
+
| 0.0547 | 205000 | 0.2133 |
|
512 |
+
| 0.0549 | 206000 | 0.2101 |
|
513 |
+
| 0.0552 | 207000 | 0.208 |
|
514 |
+
| 0.0555 | 208000 | 0.2129 |
|
515 |
+
| 0.0557 | 209000 | 0.208 |
|
516 |
+
| 0.0560 | 210000 | 0.2093 |
|
517 |
+
| 0.0563 | 211000 | 0.2123 |
|
518 |
+
| 0.0565 | 212000 | 0.205 |
|
519 |
+
| 0.0568 | 213000 | 0.2012 |
|
520 |
+
| 0.0571 | 214000 | 0.2078 |
|
521 |
+
| 0.0573 | 215000 | 0.2107 |
|
522 |
+
| 0.0576 | 216000 | 0.206 |
|
523 |
+
| 0.0579 | 217000 | 0.2055 |
|
524 |
+
| 0.0581 | 218000 | 0.2067 |
|
525 |
+
| 0.0584 | 219000 | 0.2143 |
|
526 |
+
| 0.0587 | 220000 | 0.204 |
|
527 |
+
| 0.0589 | 221000 | 0.2071 |
|
528 |
+
| 0.0592 | 222000 | 0.2026 |
|
529 |
+
| 0.0595 | 223000 | 0.1994 |
|
530 |
+
| 0.0597 | 224000 | 0.2045 |
|
531 |
+
| 0.0600 | 225000 | 0.2155 |
|
532 |
+
| 0.0603 | 226000 | 0.2075 |
|
533 |
+
| 0.0605 | 227000 | 0.195 |
|
534 |
+
| 0.0608 | 228000 | 0.2028 |
|
535 |
+
| 0.0611 | 229000 | 0.1973 |
|
536 |
+
| 0.0613 | 230000 | 0.2034 |
|
537 |
+
| 0.0616 | 231000 | 0.2039 |
|
538 |
+
| 0.0619 | 232000 | 0.1937 |
|
539 |
+
| 0.0621 | 233000 | 0.2 |
|
540 |
+
| 0.0624 | 234000 | 0.1958 |
|
541 |
+
| 0.0627 | 235000 | 0.1986 |
|
542 |
+
| 0.0629 | 236000 | 0.1975 |
|
543 |
+
| 0.0632 | 237000 | 0.2061 |
|
544 |
+
| 0.0635 | 238000 | 0.2021 |
|
545 |
+
| 0.0637 | 239000 | 0.1957 |
|
546 |
+
| 0.0640 | 240000 | 0.1997 |
|
547 |
+
| 0.0643 | 241000 | 0.1968 |
|
548 |
+
| 0.0645 | 242000 | 0.1881 |
|
549 |
+
| 0.0648 | 243000 | 0.2038 |
|
550 |
+
| 0.0651 | 244000 | 0.1991 |
|
551 |
+
| 0.0653 | 245000 | 0.1841 |
|
552 |
+
| 0.0656 | 246000 | 0.1919 |
|
553 |
+
| 0.0659 | 247000 | 0.187 |
|
554 |
+
| 0.0661 | 248000 | 0.1889 |
|
555 |
+
| 0.0664 | 249000 | 0.1987 |
|
556 |
+
| 0.0667 | 250000 | 0.1992 |
|
557 |
+
| 0.0669 | 251000 | 0.1913 |
|
558 |
+
| 0.0672 | 252000 | 0.1995 |
|
559 |
+
| 0.0675 | 253000 | 0.1875 |
|
560 |
+
| 0.0677 | 254000 | 0.1923 |
|
561 |
+
| 0.0680 | 255000 | 0.1773 |
|
562 |
+
| 0.0683 | 256000 | 0.1869 |
|
563 |
+
| 0.0685 | 257000 | 0.1975 |
|
564 |
+
| 0.0688 | 258000 | 0.1865 |
|
565 |
+
| 0.0691 | 259000 | 0.1889 |
|
566 |
+
| 0.0693 | 260000 | 0.1896 |
|
567 |
+
| 0.0696 | 261000 | 0.1829 |
|
568 |
+
| 0.0699 | 262000 | 0.1843 |
|
569 |
+
| 0.0701 | 263000 | 0.195 |
|
570 |
+
| 0.0704 | 264000 | 0.1818 |
|
571 |
+
| 0.0707 | 265000 | 0.1855 |
|
572 |
+
| 0.0709 | 266000 | 0.1841 |
|
573 |
+
| 0.0712 | 267000 | 0.1889 |
|
574 |
+
| 0.0715 | 268000 | 0.1814 |
|
575 |
+
| 0.0717 | 269000 | 0.1917 |
|
576 |
+
| 0.0720 | 270000 | 0.1862 |
|
577 |
+
| 0.0723 | 271000 | 0.1869 |
|
578 |
+
| 0.0725 | 272000 | 0.1859 |
|
579 |
+
| 0.0728 | 273000 | 0.182 |
|
580 |
+
| 0.0731 | 274000 | 0.1896 |
|
581 |
+
| 0.0733 | 275000 | 0.1936 |
|
582 |
+
| 0.0736 | 276000 | 0.1846 |
|
583 |
+
| 0.0739 | 277000 | 0.18 |
|
584 |
+
| 0.0741 | 278000 | 0.1812 |
|
585 |
+
| 0.0744 | 279000 | 0.1859 |
|
586 |
+
| 0.0747 | 280000 | 0.1785 |
|
587 |
+
| 0.0749 | 281000 | 0.1806 |
|
588 |
+
| 0.0752 | 282000 | 0.182 |
|
589 |
+
| 0.0755 | 283000 | 0.1848 |
|
590 |
+
| 0.0757 | 284000 | 0.1798 |
|
591 |
+
| 0.0760 | 285000 | 0.1853 |
|
592 |
+
| 0.0763 | 286000 | 0.1834 |
|
593 |
+
| 0.0765 | 287000 | 0.1815 |
|
594 |
+
| 0.0768 | 288000 | 0.1819 |
|
595 |
+
| 0.0771 | 289000 | 0.1808 |
|
596 |
+
| 0.0773 | 290000 | 0.1851 |
|
597 |
+
| 0.0776 | 291000 | 0.1823 |
|
598 |
+
| 0.0779 | 292000 | 0.179 |
|
599 |
+
| 0.0781 | 293000 | 0.1825 |
|
600 |
+
| 0.0784 | 294000 | 0.1751 |
|
601 |
+
| 0.0787 | 295000 | 0.1778 |
|
602 |
+
| 0.0789 | 296000 | 0.1773 |
|
603 |
+
| 0.0792 | 297000 | 0.1795 |
|
604 |
+
| 0.0795 | 298000 | 0.1854 |
|
605 |
+
| 0.0797 | 299000 | 0.1818 |
|
606 |
+
| 0.0800 | 300000 | 0.1734 |
|
607 |
+
| 0.0803 | 301000 | 0.1787 |
|
608 |
+
| 0.0805 | 302000 | 0.1807 |
|
609 |
+
| 0.0808 | 303000 | 0.1817 |
|
610 |
+
| 0.0811 | 304000 | 0.1722 |
|
611 |
+
| 0.0813 | 305000 | 0.1762 |
|
612 |
+
| 0.0816 | 306000 | 0.1741 |
|
613 |
+
| 0.0819 | 307000 | 0.1754 |
|
614 |
+
| 0.0821 | 308000 | 0.1713 |
|
615 |
+
| 0.0824 | 309000 | 0.1724 |
|
616 |
+
| 0.0827 | 310000 | 0.1745 |
|
617 |
+
| 0.0829 | 311000 | 0.1774 |
|
618 |
+
| 0.0832 | 312000 | 0.1763 |
|
619 |
+
| 0.0835 | 313000 | 0.1768 |
|
620 |
+
| 0.0837 | 314000 | 0.1717 |
|
621 |
+
| 0.0840 | 315000 | 0.1692 |
|
622 |
+
| 0.0843 | 316000 | 0.1721 |
|
623 |
+
| 0.0845 | 317000 | 0.1673 |
|
624 |
+
| 0.0848 | 318000 | 0.1762 |
|
625 |
+
| 0.0851 | 319000 | 0.1784 |
|
626 |
+
| 0.0853 | 320000 | 0.1697 |
|
627 |
+
| 0.0856 | 321000 | 0.172 |
|
628 |
+
| 0.0859 | 322000 | 0.1658 |
|
629 |
+
| 0.0861 | 323000 | 0.1761 |
|
630 |
+
| 0.0864 | 324000 | 0.1729 |
|
631 |
+
| 0.0867 | 325000 | 0.1672 |
|
632 |
+
| 0.0869 | 326000 | 0.1671 |
|
633 |
+
| 0.0872 | 327000 | 0.1685 |
|
634 |
+
| 0.0875 | 328000 | 0.1729 |
|
635 |
+
| 0.0877 | 329000 | 0.166 |
|
636 |
+
| 0.0880 | 330000 | 0.1712 |
|
637 |
+
| 0.0883 | 331000 | 0.1737 |
|
638 |
+
| 0.0885 | 332000 | 0.1723 |
|
639 |
+
| 0.0888 | 333000 | 0.1705 |
|
640 |
+
| 0.0891 | 334000 | 0.1718 |
|
641 |
+
| 0.0893 | 335000 | 0.1689 |
|
642 |
+
| 0.0896 | 336000 | 0.1747 |
|
643 |
+
| 0.0899 | 337000 | 0.1696 |
|
644 |
+
| 0.0901 | 338000 | 0.1712 |
|
645 |
+
| 0.0904 | 339000 | 0.1674 |
|
646 |
+
| 0.0907 | 340000 | 0.1709 |
|
647 |
+
| 0.0909 | 341000 | 0.169 |
|
648 |
+
| 0.0912 | 342000 | 0.1714 |
|
649 |
+
| 0.0915 | 343000 | 0.1544 |
|
650 |
+
| 0.0917 | 344000 | 0.1755 |
|
651 |
+
| 0.0920 | 345000 | 0.1689 |
|
652 |
+
| 0.0923 | 346000 | 0.1561 |
|
653 |
+
| 0.0925 | 347000 | 0.1712 |
|
654 |
+
| 0.0928 | 348000 | 0.1583 |
|
655 |
+
| 0.0931 | 349000 | 0.159 |
|
656 |
+
| 0.0933 | 350000 | 0.1715 |
|
657 |
+
| 0.0936 | 351000 | 0.1608 |
|
658 |
+
| 0.0939 | 352000 | 0.1703 |
|
659 |
+
| 0.0941 | 353000 | 0.1682 |
|
660 |
+
| 0.0944 | 354000 | 0.1622 |
|
661 |
+
| 0.0947 | 355000 | 0.1663 |
|
662 |
+
| 0.0949 | 356000 | 0.1632 |
|
663 |
+
| 0.0952 | 357000 | 0.1663 |
|
664 |
+
| 0.0955 | 358000 | 0.1643 |
|
665 |
+
| 0.0957 | 359000 | 0.1674 |
|
666 |
+
| 0.0960 | 360000 | 0.1634 |
|
667 |
+
| 0.0963 | 361000 | 0.1616 |
|
668 |
+
| 0.0965 | 362000 | 0.1691 |
|
669 |
+
| 0.0968 | 363000 | 0.1594 |
|
670 |
+
| 0.0971 | 364000 | 0.1589 |
|
671 |
+
| 0.0973 | 365000 | 0.1568 |
|
672 |
+
| 0.0976 | 366000 | 0.1586 |
|
673 |
+
| 0.0979 | 367000 | 0.1555 |
|
674 |
+
| 0.0981 | 368000 | 0.161 |
|
675 |
+
| 0.0984 | 369000 | 0.1615 |
|
676 |
+
| 0.0987 | 370000 | 0.1691 |
|
677 |
+
| 0.0989 | 371000 | 0.151 |
|
678 |
+
| 0.0992 | 372000 | 0.1653 |
|
679 |
+
| 0.0995 | 373000 | 0.1545 |
|
680 |
+
| 0.0997 | 374000 | 0.1627 |
|
681 |
+
| 0.1000 | 375000 | 0.1688 |
|
682 |
+
| 0.1003 | 376000 | 0.1594 |
|
683 |
+
| 0.1005 | 377000 | 0.1619 |
|
684 |
+
| 0.1008 | 378000 | 0.1517 |
|
685 |
+
| 0.1011 | 379000 | 0.1605 |
|
686 |
+
| 0.1013 | 380000 | 0.1576 |
|
687 |
+
| 0.1016 | 381000 | 0.1589 |
|
688 |
+
| 0.1019 | 382000 | 0.1643 |
|
689 |
+
| 0.1021 | 383000 | 0.164 |
|
690 |
+
| 0.1024 | 384000 | 0.158 |
|
691 |
+
| 0.1027 | 385000 | 0.1584 |
|
692 |
+
| 0.1029 | 386000 | 0.1565 |
|
693 |
+
| 0.1032 | 387000 | 0.1566 |
|
694 |
+
| 0.1035 | 388000 | 0.1625 |
|
695 |
+
| 0.1037 | 389000 | 0.1569 |
|
696 |
+
| 0.1040 | 390000 | 0.159 |
|
697 |
+
| 0.1043 | 391000 | 0.1541 |
|
698 |
+
| 0.1045 | 392000 | 0.159 |
|
699 |
+
| 0.1048 | 393000 | 0.1536 |
|
700 |
+
| 0.1051 | 394000 | 0.166 |
|
701 |
+
| 0.1053 | 395000 | 0.1639 |
|
702 |
+
| 0.1056 | 396000 | 0.1491 |
|
703 |
+
| 0.1059 | 397000 | 0.1567 |
|
704 |
+
| 0.1061 | 398000 | 0.1566 |
|
705 |
+
| 0.1064 | 399000 | 0.1641 |
|
706 |
+
| 0.1067 | 400000 | 0.1552 |
|
707 |
+
| 0.1069 | 401000 | 0.1476 |
|
708 |
+
| 0.1072 | 402000 | 0.157 |
|
709 |
+
| 0.1075 | 403000 | 0.1538 |
|
710 |
+
| 0.1077 | 404000 | 0.152 |
|
711 |
+
| 0.1080 | 405000 | 0.1525 |
|
712 |
+
| 0.1083 | 406000 | 0.155 |
|
713 |
+
| 0.1085 | 407000 | 0.1538 |
|
714 |
+
| 0.1088 | 408000 | 0.1506 |
|
715 |
+
| 0.1091 | 409000 | 0.1481 |
|
716 |
+
| 0.1093 | 410000 | 0.1603 |
|
717 |
+
| 0.1096 | 411000 | 0.1509 |
|
718 |
+
| 0.1099 | 412000 | 0.1628 |
|
719 |
+
| 0.1101 | 413000 | 0.151 |
|
720 |
+
| 0.1104 | 414000 | 0.1581 |
|
721 |
+
| 0.1107 | 415000 | 0.1511 |
|
722 |
+
| 0.1109 | 416000 | 0.1552 |
|
723 |
+
| 0.1112 | 417000 | 0.1553 |
|
724 |
+
| 0.1115 | 418000 | 0.1508 |
|
725 |
+
| 0.1117 | 419000 | 0.1515 |
|
726 |
+
| 0.1120 | 420000 | 0.1526 |
|
727 |
+
| 0.1123 | 421000 | 0.15 |
|
728 |
+
| 0.1125 | 422000 | 0.1497 |
|
729 |
+
| 0.1128 | 423000 | 0.1526 |
|
730 |
+
| 0.1131 | 424000 | 0.1547 |
|
731 |
+
| 0.1133 | 425000 | 0.151 |
|
732 |
+
| 0.1136 | 426000 | 0.1471 |
|
733 |
+
| 0.1139 | 427000 | 0.1576 |
|
734 |
+
| 0.1141 | 428000 | 0.1522 |
|
735 |
+
| 0.1144 | 429000 | 0.1506 |
|
736 |
+
| 0.1147 | 430000 | 0.1495 |
|
737 |
+
| 0.1149 | 431000 | 0.1518 |
|
738 |
+
| 0.1152 | 432000 | 0.1467 |
|
739 |
+
| 0.1155 | 433000 | 0.1511 |
|
740 |
+
| 0.1157 | 434000 | 0.1516 |
|
741 |
+
| 0.1160 | 435000 | 0.1476 |
|
742 |
+
| 0.1163 | 436000 | 0.1526 |
|
743 |
+
| 0.1165 | 437000 | 0.1474 |
|
744 |
+
| 0.1168 | 438000 | 0.1445 |
|
745 |
+
| 0.1171 | 439000 | 0.1408 |
|
746 |
+
| 0.1173 | 440000 | 0.1412 |
|
747 |
+
| 0.1176 | 441000 | 0.1445 |
|
748 |
+
| 0.1179 | 442000 | 0.145 |
|
749 |
+
| 0.1181 | 443000 | 0.1402 |
|
750 |
+
| 0.1184 | 444000 | 0.154 |
|
751 |
+
| 0.1187 | 445000 | 0.1446 |
|
752 |
+
| 0.1189 | 446000 | 0.1476 |
|
753 |
+
| 0.1192 | 447000 | 0.1565 |
|
754 |
+
| 0.1195 | 448000 | 0.1409 |
|
755 |
+
| 0.1197 | 449000 | 0.1511 |
|
756 |
+
| 0.1200 | 450000 | 0.139 |
|
757 |
+
| 0.1203 | 451000 | 0.1463 |
|
758 |
+
| 0.1205 | 452000 | 0.1453 |
|
759 |
+
| 0.1208 | 453000 | 0.1432 |
|
760 |
+
| 0.1211 | 454000 | 0.1559 |
|
761 |
+
| 0.1213 | 455000 | 0.1354 |
|
762 |
+
| 0.1216 | 456000 | 0.1419 |
|
763 |
+
| 0.1219 | 457000 | 0.1452 |
|
764 |
+
| 0.1221 | 458000 | 0.147 |
|
765 |
+
| 0.1224 | 459000 | 0.1453 |
|
766 |
+
| 0.1227 | 460000 | 0.153 |
|
767 |
+
| 0.1229 | 461000 | 0.1496 |
|
768 |
+
| 0.1232 | 462000 | 0.1464 |
|
769 |
+
| 0.1235 | 463000 | 0.1423 |
|
770 |
+
| 0.1237 | 464000 | 0.1403 |
|
771 |
+
| 0.1240 | 465000 | 0.1458 |
|
772 |
+
| 0.1243 | 466000 | 0.1508 |
|
773 |
+
| 0.1245 | 467000 | 0.1442 |
|
774 |
+
| 0.1248 | 468000 | 0.1521 |
|
775 |
+
| 0.1251 | 469000 | 0.1424 |
|
776 |
+
| 0.1253 | 470000 | 0.1545 |
|
777 |
+
| 0.1256 | 471000 | 0.1389 |
|
778 |
+
| 0.1259 | 472000 | 0.1408 |
|
779 |
+
| 0.1261 | 473000 | 0.1398 |
|
780 |
+
| 0.1264 | 474000 | 0.1333 |
|
781 |
+
| 0.1267 | 475000 | 0.1436 |
|
782 |
+
| 0.1269 | 476000 | 0.1423 |
|
783 |
+
| 0.1272 | 477000 | 0.1393 |
|
784 |
+
| 0.1275 | 478000 | 0.1465 |
|
785 |
+
| 0.1277 | 479000 | 0.1484 |
|
786 |
+
| 0.1280 | 480000 | 0.1412 |
|
787 |
+
| 0.1283 | 481000 | 0.143 |
|
788 |
+
| 0.1285 | 482000 | 0.139 |
|
789 |
+
| 0.1288 | 483000 | 0.1447 |
|
790 |
+
| 0.1291 | 484000 | 0.1388 |
|
791 |
+
| 0.1293 | 485000 | 0.1414 |
|
792 |
+
| 0.1296 | 486000 | 0.1444 |
|
793 |
+
| 0.1299 | 487000 | 0.1365 |
|
794 |
+
| 0.1301 | 488000 | 0.1403 |
|
795 |
+
| 0.1304 | 489000 | 0.1398 |
|
796 |
+
| 0.1307 | 490000 | 0.1302 |
|
797 |
+
| 0.1309 | 491000 | 0.1443 |
|
798 |
+
| 0.1312 | 492000 | 0.1402 |
|
799 |
+
| 0.1315 | 493000 | 0.1451 |
|
800 |
+
| 0.1317 | 494000 | 0.1397 |
|
801 |
+
| 0.1320 | 495000 | 0.137 |
|
802 |
+
| 0.1323 | 496000 | 0.1493 |
|
803 |
+
| 0.1325 | 497000 | 0.1415 |
|
804 |
+
| 0.1328 | 498000 | 0.1365 |
|
805 |
+
| 0.1331 | 499000 | 0.1323 |
|
806 |
+
| 0.1333 | 500000 | 0.1384 |
|
807 |
+
| 0.1336 | 501000 | 0.1307 |
|
808 |
+
| 0.1339 | 502000 | 0.1385 |
|
809 |
+
| 0.1341 | 503000 | 0.1394 |
|
810 |
+
| 0.1344 | 504000 | 0.1393 |
|
811 |
+
| 0.1347 | 505000 | 0.1455 |
|
812 |
+
| 0.1349 | 506000 | 0.1374 |
|
813 |
+
| 0.1352 | 507000 | 0.1381 |
|
814 |
+
| 0.1355 | 508000 | 0.1363 |
|
815 |
+
| 0.1357 | 509000 | 0.1392 |
|
816 |
+
| 0.1360 | 510000 | 0.1399 |
|
817 |
+
| 0.1363 | 511000 | 0.1356 |
|
818 |
+
| 0.1365 | 512000 | 0.1395 |
|
819 |
+
| 0.1368 | 513000 | 0.1402 |
|
820 |
+
| 0.1371 | 514000 | 0.1382 |
|
821 |
+
| 0.1373 | 515000 | 0.1408 |
|
822 |
+
| 0.1376 | 516000 | 0.1398 |
|
823 |
+
| 0.1379 | 517000 | 0.1405 |
|
824 |
+
| 0.1381 | 518000 | 0.1351 |
|
825 |
+
| 0.1384 | 519000 | 0.1371 |
|
826 |
+
| 0.1387 | 520000 | 0.1302 |
|
827 |
+
| 0.1389 | 521000 | 0.14 |
|
828 |
+
| 0.1392 | 522000 | 0.1363 |
|
829 |
+
| 0.1395 | 523000 | 0.1313 |
|
830 |
+
| 0.1397 | 524000 | 0.1299 |
|
831 |
+
| 0.1400 | 525000 | 0.1372 |
|
832 |
+
| 0.1403 | 526000 | 0.1416 |
|
833 |
+
| 0.1405 | 527000 | 0.1295 |
|
834 |
+
| 0.1408 | 528000 | 0.1359 |
|
835 |
+
| 0.1411 | 529000 | 0.1383 |
|
836 |
+
| 0.1413 | 530000 | 0.1378 |
|
837 |
+
| 0.1416 | 531000 | 0.135 |
|
838 |
+
| 0.1419 | 532000 | 0.1405 |
|
839 |
+
| 0.1421 | 533000 | 0.14 |
|
840 |
+
| 0.1424 | 534000 | 0.1321 |
|
841 |
+
| 0.1427 | 535000 | 0.1303 |
|
842 |
+
| 0.1429 | 536000 | 0.1319 |
|
843 |
+
| 0.1432 | 537000 | 0.1312 |
|
844 |
+
| 0.1435 | 538000 | 0.1338 |
|
845 |
+
| 0.1437 | 539000 | 0.1361 |
|
846 |
+
| 0.1440 | 540000 | 0.139 |
|
847 |
+
| 0.1443 | 541000 | 0.1364 |
|
848 |
+
| 0.1445 | 542000 | 0.1316 |
|
849 |
+
| 0.1448 | 543000 | 0.1331 |
|
850 |
+
| 0.1451 | 544000 | 0.1269 |
|
851 |
+
| 0.1453 | 545000 | 0.1294 |
|
852 |
+
| 0.1456 | 546000 | 0.135 |
|
853 |
+
| 0.1459 | 547000 | 0.1328 |
|
854 |
+
| 0.1461 | 548000 | 0.1296 |
|
855 |
+
| 0.1464 | 549000 | 0.1305 |
|
856 |
+
| 0.1467 | 550000 | 0.1334 |
|
857 |
+
| 0.1469 | 551000 | 0.1362 |
|
858 |
+
| 0.1472 | 552000 | 0.1318 |
|
859 |
+
| 0.1475 | 553000 | 0.1312 |
|
860 |
+
| 0.1477 | 554000 | 0.1293 |
|
861 |
+
| 0.1480 | 555000 | 0.1324 |
|
862 |
+
| 0.1483 | 556000 | 0.1256 |
|
863 |
+
| 0.1485 | 557000 | 0.1227 |
|
864 |
+
| 0.1488 | 558000 | 0.1239 |
|
865 |
+
| 0.1491 | 559000 | 0.1287 |
|
866 |
+
| 0.1493 | 560000 | 0.1307 |
|
867 |
+
| 0.1496 | 561000 | 0.1336 |
|
868 |
+
| 0.1499 | 562000 | 0.133 |
|
869 |
+
| 0.1501 | 563000 | 0.1278 |
|
870 |
+
| 0.1504 | 564000 | 0.1339 |
|
871 |
+
| 0.1507 | 565000 | 0.1321 |
|
872 |
+
| 0.1509 | 566000 | 0.1322 |
|
873 |
+
| 0.1512 | 567000 | 0.1262 |
|
874 |
+
| 0.1515 | 568000 | 0.1331 |
|
875 |
+
| 0.1517 | 569000 | 0.1361 |
|
876 |
+
| 0.1520 | 570000 | 0.1307 |
|
877 |
+
| 0.1523 | 571000 | 0.133 |
|
878 |
+
| 0.1525 | 572000 | 0.1293 |
|
879 |
+
| 0.1528 | 573000 | 0.1283 |
|
880 |
+
| 0.1531 | 574000 | 0.1275 |
|
881 |
+
| 0.1533 | 575000 | 0.1329 |
|
882 |
+
| 0.1536 | 576000 | 0.1307 |
|
883 |
+
| 0.1539 | 577000 | 0.1245 |
|
884 |
+
| 0.1541 | 578000 | 0.1313 |
|
885 |
+
| 0.1544 | 579000 | 0.1256 |
|
886 |
+
| 0.1547 | 580000 | 0.1257 |
|
887 |
+
| 0.1549 | 581000 | 0.1194 |
|
888 |
+
| 0.1552 | 582000 | 0.125 |
|
889 |
+
| 0.1555 | 583000 | 0.1345 |
|
890 |
+
| 0.1557 | 584000 | 0.1308 |
|
891 |
+
| 0.1560 | 585000 | 0.1318 |
|
892 |
+
| 0.1563 | 586000 | 0.1348 |
|
893 |
+
| 0.1565 | 587000 | 0.1231 |
|
894 |
+
| 0.1568 | 588000 | 0.1282 |
|
895 |
+
| 0.1571 | 589000 | 0.1281 |
|
896 |
+
| 0.1573 | 590000 | 0.1221 |
|
897 |
+
| 0.1576 | 591000 | 0.1234 |
|
898 |
+
| 0.1579 | 592000 | 0.1334 |
|
899 |
+
| 0.1581 | 593000 | 0.1249 |
|
900 |
+
| 0.1584 | 594000 | 0.1216 |
|
901 |
+
| 0.1587 | 595000 | 0.1295 |
|
902 |
+
| 0.1589 | 596000 | 0.1191 |
|
903 |
+
| 0.1592 | 597000 | 0.1267 |
|
904 |
+
| 0.1595 | 598000 | 0.1273 |
|
905 |
+
| 0.1597 | 599000 | 0.124 |
|
906 |
+
| 0.1600 | 600000 | 0.1271 |
|
907 |
+
| 0.1603 | 601000 | 0.1284 |
|
908 |
+
| 0.1605 | 602000 | 0.1285 |
|
909 |
+
| 0.1608 | 603000 | 0.1288 |
|
910 |
+
| 0.1611 | 604000 | 0.1252 |
|
911 |
+
| 0.1613 | 605000 | 0.1255 |
|
912 |
+
| 0.1616 | 606000 | 0.1289 |
|
913 |
+
| 0.1619 | 607000 | 0.1294 |
|
914 |
+
| 0.1621 | 608000 | 0.1294 |
|
915 |
+
| 0.1624 | 609000 | 0.1288 |
|
916 |
+
| 0.1627 | 610000 | 0.1336 |
|
917 |
+
| 0.1629 | 611000 | 0.125 |
|
918 |
+
| 0.1632 | 612000 | 0.1288 |
|
919 |
+
| 0.1635 | 613000 | 0.122 |
|
920 |
+
| 0.1637 | 614000 | 0.1204 |
|
921 |
+
| 0.1640 | 615000 | 0.1245 |
|
922 |
+
| 0.1643 | 616000 | 0.1303 |
|
923 |
+
| 0.1645 | 617000 | 0.1187 |
|
924 |
+
| 0.1648 | 618000 | 0.1223 |
|
925 |
+
| 0.1651 | 619000 | 0.1311 |
|
926 |
+
| 0.1653 | 620000 | 0.1202 |
|
927 |
+
| 0.1656 | 621000 | 0.1271 |
|
928 |
+
| 0.1659 | 622000 | 0.1218 |
|
929 |
+
| 0.1661 | 623000 | 0.1218 |
|
930 |
+
| 0.1664 | 624000 | 0.1247 |
|
931 |
+
| 0.1667 | 625000 | 0.1289 |
|
932 |
+
| 0.1669 | 626000 | 0.1261 |
|
933 |
+
| 0.1672 | 627000 | 0.1262 |
|
934 |
+
| 0.1675 | 628000 | 0.1251 |
|
935 |
+
| 0.1677 | 629000 | 0.1271 |
|
936 |
+
| 0.1680 | 630000 | 0.1243 |
|
937 |
+
| 0.1683 | 631000 | 0.1266 |
|
938 |
+
| 0.1685 | 632000 | 0.1257 |
|
939 |
+
| 0.1688 | 633000 | 0.1215 |
|
940 |
+
| 0.1691 | 634000 | 0.1236 |
|
941 |
+
| 0.1693 | 635000 | 0.1267 |
|
942 |
+
| 0.1696 | 636000 | 0.1209 |
|
943 |
+
| 0.1699 | 637000 | 0.1188 |
|
944 |
+
| 0.1701 | 638000 | 0.1267 |
|
945 |
+
| 0.1704 | 639000 | 0.1259 |
|
946 |
+
| 0.1707 | 640000 | 0.1225 |
|
947 |
+
| 0.1709 | 641000 | 0.1183 |
|
948 |
+
| 0.1712 | 642000 | 0.1202 |
|
949 |
+
| 0.1715 | 643000 | 0.1279 |
|
950 |
+
| 0.1717 | 644000 | 0.1191 |
|
951 |
+
| 0.1720 | 645000 | 0.1206 |
|
952 |
+
| 0.1723 | 646000 | 0.1178 |
|
953 |
+
| 0.1725 | 647000 | 0.1234 |
|
954 |
+
| 0.1728 | 648000 | 0.1259 |
|
955 |
+
| 0.1731 | 649000 | 0.1227 |
|
956 |
+
| 0.1733 | 650000 | 0.1211 |
|
957 |
+
| 0.1736 | 651000 | 0.1216 |
|
958 |
+
| 0.1739 | 652000 | 0.1182 |
|
959 |
+
| 0.1741 | 653000 | 0.1205 |
|
960 |
+
| 0.1744 | 654000 | 0.1187 |
|
961 |
+
| 0.1747 | 655000 | 0.1144 |
|
962 |
+
| 0.1749 | 656000 | 0.1216 |
|
963 |
+
| 0.1752 | 657000 | 0.1287 |
|
964 |
+
| 0.1755 | 658000 | 0.122 |
|
965 |
+
| 0.1757 | 659000 | 0.1213 |
|
966 |
+
| 0.1760 | 660000 | 0.1217 |
|
967 |
+
| 0.1763 | 661000 | 0.1256 |
|
968 |
+
| 0.1765 | 662000 | 0.1227 |
|
969 |
+
| 0.1768 | 663000 | 0.1219 |
|
970 |
+
| 0.1771 | 664000 | 0.1261 |
|
971 |
+
| 0.1773 | 665000 | 0.1169 |
|
972 |
+
| 0.1776 | 666000 | 0.1192 |
|
973 |
+
| 0.1779 | 667000 | 0.1187 |
|
974 |
+
| 0.1781 | 668000 | 0.1117 |
|
975 |
+
| 0.1784 | 669000 | 0.1189 |
|
976 |
+
| 0.1787 | 670000 | 0.12 |
|
977 |
+
| 0.1789 | 671000 | 0.1204 |
|
978 |
+
| 0.1792 | 672000 | 0.1208 |
|
979 |
+
| 0.1795 | 673000 | 0.119 |
|
980 |
+
| 0.1797 | 674000 | 0.1161 |
|
981 |
+
| 0.1800 | 675000 | 0.1167 |
|
982 |
+
| 0.1803 | 676000 | 0.1235 |
|
983 |
+
| 0.1805 | 677000 | 0.1276 |
|
984 |
+
| 0.1808 | 678000 | 0.1188 |
|
985 |
+
| 0.1811 | 679000 | 0.1135 |
|
986 |
+
| 0.1813 | 680000 | 0.1187 |
|
987 |
+
| 0.1816 | 681000 | 0.1165 |
|
988 |
+
| 0.1819 | 682000 | 0.1224 |
|
989 |
+
| 0.1821 | 683000 | 0.125 |
|
990 |
+
| 0.1824 | 684000 | 0.1146 |
|
991 |
+
| 0.1827 | 685000 | 0.1162 |
|
992 |
+
| 0.1829 | 686000 | 0.1172 |
|
993 |
+
| 0.1832 | 687000 | 0.1197 |
|
994 |
+
| 0.1835 | 688000 | 0.113 |
|
995 |
+
| 0.1837 | 689000 | 0.1216 |
|
996 |
+
| 0.1840 | 690000 | 0.1144 |
|
997 |
+
| 0.1843 | 691000 | 0.1274 |
|
998 |
+
| 0.1845 | 692000 | 0.1136 |
|
999 |
+
| 0.1848 | 693000 | 0.1202 |
|
1000 |
+
| 0.1851 | 694000 | 0.1249 |
|
1001 |
+
| 0.1853 | 695000 | 0.1195 |
|
1002 |
+
| 0.1856 | 696000 | 0.1158 |
|
1003 |
+
| 0.1859 | 697000 | 0.1145 |
|
1004 |
+
| 0.1861 | 698000 | 0.1187 |
|
1005 |
+
| 0.1864 | 699000 | 0.1173 |
|
1006 |
+
| 0.1867 | 700000 | 0.1181 |
|
1007 |
+
| 0.1869 | 701000 | 0.1236 |
|
1008 |
+
| 0.1872 | 702000 | 0.1223 |
|
1009 |
+
| 0.1875 | 703000 | 0.1147 |
|
1010 |
+
| 0.1877 | 704000 | 0.1197 |
|
1011 |
+
| 0.1880 | 705000 | 0.1125 |
|
1012 |
+
| 0.1883 | 706000 | 0.1175 |
|
1013 |
+
| 0.1885 | 707000 | 0.1239 |
|
1014 |
+
| 0.1888 | 708000 | 0.1263 |
|
1015 |
+
| 0.1891 | 709000 | 0.1229 |
|
1016 |
+
| 0.1893 | 710000 | 0.1202 |
|
1017 |
+
| 0.1896 | 711000 | 0.1159 |
|
1018 |
+
| 0.1899 | 712000 | 0.1232 |
|
1019 |
+
| 0.1901 | 713000 | 0.1197 |
|
1020 |
+
| 0.1904 | 714000 | 0.121 |
|
1021 |
+
| 0.1907 | 715000 | 0.1189 |
|
1022 |
+
| 0.1909 | 716000 | 0.1183 |
|
1023 |
+
| 0.1912 | 717000 | 0.1091 |
|
1024 |
+
| 0.1915 | 718000 | 0.1186 |
|
1025 |
+
| 0.1917 | 719000 | 0.115 |
|
1026 |
+
| 0.1920 | 720000 | 0.1146 |
|
1027 |
+
| 0.1923 | 721000 | 0.1165 |
|
1028 |
+
| 0.1925 | 722000 | 0.1192 |
|
1029 |
+
| 0.1928 | 723000 | 0.1163 |
|
1030 |
+
| 0.1931 | 724000 | 0.1162 |
|
1031 |
+
| 0.1933 | 725000 | 0.1156 |
|
1032 |
+
| 0.1936 | 726000 | 0.1218 |
|
1033 |
+
| 0.1939 | 727000 | 0.1154 |
|
1034 |
+
| 0.1941 | 728000 | 0.1131 |
|
1035 |
+
| 0.1944 | 729000 | 0.118 |
|
1036 |
+
| 0.1947 | 730000 | 0.1156 |
|
1037 |
+
| 0.1949 | 731000 | 0.1193 |
|
1038 |
+
| 0.1952 | 732000 | 0.1143 |
|
1039 |
+
| 0.1955 | 733000 | 0.1211 |
|
1040 |
+
| 0.1957 | 734000 | 0.1187 |
|
1041 |
+
| 0.1960 | 735000 | 0.12 |
|
1042 |
+
| 0.1963 | 736000 | 0.1164 |
|
1043 |
+
| 0.1965 | 737000 | 0.1173 |
|
1044 |
+
| 0.1968 | 738000 | 0.1151 |
|
1045 |
+
| 0.1971 | 739000 | 0.1143 |
|
1046 |
+
| 0.1973 | 740000 | 0.1141 |
|
1047 |
+
| 0.1976 | 741000 | 0.1174 |
|
1048 |
+
| 0.1979 | 742000 | 0.1185 |
|
1049 |
+
| 0.1981 | 743000 | 0.1133 |
|
1050 |
+
| 0.1984 | 744000 | 0.1174 |
|
1051 |
+
| 0.1987 | 745000 | 0.1154 |
|
1052 |
+
| 0.1989 | 746000 | 0.1138 |
|
1053 |
+
| 0.1992 | 747000 | 0.1203 |
|
1054 |
+
| 0.1995 | 748000 | 0.1119 |
|
1055 |
+
| 0.1997 | 749000 | 0.111 |
|
1056 |
+
| 0.2000 | 750000 | 0.1174 |
|
1057 |
+
| 0.2003 | 751000 | 0.1204 |
|
1058 |
+
| 0.2005 | 752000 | 0.1177 |
|
1059 |
+
| 0.2008 | 753000 | 0.1139 |
|
1060 |
+
| 0.2011 | 754000 | 0.1138 |
|
1061 |
+
| 0.2013 | 755000 | 0.1179 |
|
1062 |
+
| 0.2016 | 756000 | 0.1094 |
|
1063 |
+
| 0.2019 | 757000 | 0.1092 |
|
1064 |
+
| 0.2021 | 758000 | 0.1108 |
|
1065 |
+
| 0.2024 | 759000 | 0.1125 |
|
1066 |
+
| 0.2027 | 760000 | 0.1202 |
|
1067 |
+
| 0.2029 | 761000 | 0.1119 |
|
1068 |
+
| 0.2032 | 762000 | 0.1151 |
|
1069 |
+
| 0.2035 | 763000 | 0.1169 |
|
1070 |
+
| 0.2037 | 764000 | 0.1109 |
|
1071 |
+
| 0.2040 | 765000 | 0.1112 |
|
1072 |
+
| 0.2043 | 766000 | 0.1102 |
|
1073 |
+
| 0.2045 | 767000 | 0.119 |
|
1074 |
+
| 0.2048 | 768000 | 0.1131 |
|
1075 |
+
| 0.2051 | 769000 | 0.1155 |
|
1076 |
+
| 0.2053 | 770000 | 0.1133 |
|
1077 |
+
| 0.2056 | 771000 | 0.1127 |
|
1078 |
+
| 0.2059 | 772000 | 0.1116 |
|
1079 |
+
| 0.2061 | 773000 | 0.1122 |
|
1080 |
+
| 0.2064 | 774000 | 0.1151 |
|
1081 |
+
| 0.2067 | 775000 | 0.1163 |
|
1082 |
+
| 0.2069 | 776000 | 0.1162 |
|
1083 |
+
| 0.2072 | 777000 | 0.1096 |
|
1084 |
+
| 0.2075 | 778000 | 0.1151 |
|
1085 |
+
| 0.2077 | 779000 | 0.1156 |
|
1086 |
+
| 0.2080 | 780000 | 0.1135 |
|
1087 |
+
| 0.2083 | 781000 | 0.1084 |
|
1088 |
+
| 0.2085 | 782000 | 0.114 |
|
1089 |
+
| 0.2088 | 783000 | 0.1128 |
|
1090 |
+
| 0.2091 | 784000 | 0.1142 |
|
1091 |
+
| 0.2093 | 785000 | 0.1092 |
|
1092 |
+
| 0.2096 | 786000 | 0.1067 |
|
1093 |
+
| 0.2099 | 787000 | 0.1156 |
|
1094 |
+
| 0.2101 | 788000 | 0.1094 |
|
1095 |
+
| 0.2104 | 789000 | 0.1078 |
|
1096 |
+
| 0.2107 | 790000 | 0.1133 |
|
1097 |
+
| 0.2109 | 791000 | 0.1165 |
|
1098 |
+
| 0.2112 | 792000 | 0.1116 |
|
1099 |
+
| 0.2115 | 793000 | 0.1111 |
|
1100 |
+
| 0.2117 | 794000 | 0.1086 |
|
1101 |
+
| 0.2120 | 795000 | 0.1114 |
|
1102 |
+
| 0.2123 | 796000 | 0.1069 |
|
1103 |
+
| 0.2125 | 797000 | 0.1094 |
|
1104 |
+
| 0.2128 | 798000 | 0.1125 |
|
1105 |
+
| 0.2131 | 799000 | 0.112 |
|
1106 |
+
| 0.2133 | 800000 | 0.1107 |
|
1107 |
+
| 0.2136 | 801000 | 0.1085 |
|
1108 |
+
| 0.2139 | 802000 | 0.1067 |
|
1109 |
+
| 0.2141 | 803000 | 0.1149 |
|
1110 |
+
| 0.2144 | 804000 | 0.1068 |
|
1111 |
+
| 0.2147 | 805000 | 0.1124 |
|
1112 |
+
| 0.2149 | 806000 | 0.1109 |
|
1113 |
+
| 0.2152 | 807000 | 0.1094 |
|
1114 |
+
| 0.2155 | 808000 | 0.1097 |
|
1115 |
+
| 0.2157 | 809000 | 0.1106 |
|
1116 |
+
| 0.2160 | 810000 | 0.1152 |
|
1117 |
+
| 0.2163 | 811000 | 0.1123 |
|
1118 |
+
| 0.2165 | 812000 | 0.1102 |
|
1119 |
+
| 0.2168 | 813000 | 0.11 |
|
1120 |
+
| 0.2171 | 814000 | 0.1 |
|
1121 |
+
| 0.2173 | 815000 | 0.1127 |
|
1122 |
+
| 0.2176 | 816000 | 0.1135 |
|
1123 |
+
| 0.2179 | 817000 | 0.1127 |
|
1124 |
+
| 0.2181 | 818000 | 0.108 |
|
1125 |
+
| 0.2184 | 819000 | 0.1119 |
|
1126 |
+
| 0.2187 | 820000 | 0.1103 |
|
1127 |
+
| 0.2189 | 821000 | 0.1084 |
|
1128 |
+
| 0.2192 | 822000 | 0.1076 |
|
1129 |
+
| 0.2195 | 823000 | 0.1145 |
|
1130 |
+
| 0.2197 | 824000 | 0.109 |
|
1131 |
+
| 0.2200 | 825000 | 0.1119 |
|
1132 |
+
| 0.2203 | 826000 | 0.1117 |
|
1133 |
+
| 0.2205 | 827000 | 0.1117 |
|
1134 |
+
| 0.2208 | 828000 | 0.1062 |
|
1135 |
+
| 0.2211 | 829000 | 0.1113 |
|
1136 |
+
| 0.2213 | 830000 | 0.1101 |
|
1137 |
+
| 0.2216 | 831000 | 0.1053 |
|
1138 |
+
| 0.2219 | 832000 | 0.1122 |
|
1139 |
+
| 0.2221 | 833000 | 0.1091 |
|
1140 |
+
| 0.2224 | 834000 | 0.1106 |
|
1141 |
+
| 0.2227 | 835000 | 0.1062 |
|
1142 |
+
| 0.2229 | 836000 | 0.1091 |
|
1143 |
+
| 0.2232 | 837000 | 0.1144 |
|
1144 |
+
| 0.2235 | 838000 | 0.1106 |
|
1145 |
+
| 0.2237 | 839000 | 0.1058 |
|
1146 |
+
| 0.2240 | 840000 | 0.1085 |
|
1147 |
+
| 0.2243 | 841000 | 0.1154 |
|
1148 |
+
| 0.2245 | 842000 | 0.1096 |
|
1149 |
+
| 0.2248 | 843000 | 0.1062 |
|
1150 |
+
| 0.2251 | 844000 | 0.1089 |
|
1151 |
+
| 0.2253 | 845000 | 0.108 |
|
1152 |
+
| 0.2256 | 846000 | 0.1086 |
|
1153 |
+
| 0.2259 | 847000 | 0.1084 |
|
1154 |
+
| 0.2261 | 848000 | 0.1056 |
|
1155 |
+
| 0.2264 | 849000 | 0.1042 |
|
1156 |
+
| 0.2267 | 850000 | 0.1204 |
|
1157 |
+
| 0.2269 | 851000 | 0.1053 |
|
1158 |
+
| 0.2272 | 852000 | 0.1053 |
|
1159 |
+
| 0.2275 | 853000 | 0.1065 |
|
1160 |
+
| 0.2277 | 854000 | 0.1157 |
|
1161 |
+
| 0.2280 | 855000 | 0.1112 |
|
1162 |
+
| 0.2283 | 856000 | 0.1058 |
|
1163 |
+
| 0.2285 | 857000 | 0.1084 |
|
1164 |
+
| 0.2288 | 858000 | 0.1066 |
|
1165 |
+
| 0.2291 | 859000 | 0.1116 |
|
1166 |
+
| 0.2293 | 860000 | 0.1047 |
|
1167 |
+
| 0.2296 | 861000 | 0.1145 |
|
1168 |
+
| 0.2299 | 862000 | 0.1094 |
|
1169 |
+
| 0.2301 | 863000 | 0.1108 |
|
1170 |
+
| 0.2304 | 864000 | 0.1038 |
|
1171 |
+
| 0.2307 | 865000 | 0.1044 |
|
1172 |
+
| 0.2309 | 866000 | 0.106 |
|
1173 |
+
| 0.2312 | 867000 | 0.105 |
|
1174 |
+
| 0.2315 | 868000 | 0.108 |
|
1175 |
+
| 0.2317 | 869000 | 0.1108 |
|
1176 |
+
| 0.2320 | 870000 | 0.113 |
|
1177 |
+
| 0.2323 | 871000 | 0.108 |
|
1178 |
+
| 0.2325 | 872000 | 0.1069 |
|
1179 |
+
| 0.2328 | 873000 | 0.1098 |
|
1180 |
+
| 0.2331 | 874000 | 0.1021 |
|
1181 |
+
| 0.2333 | 875000 | 0.109 |
|
1182 |
+
| 0.2336 | 876000 | 0.1104 |
|
1183 |
+
| 0.2339 | 877000 | 0.1043 |
|
1184 |
+
| 0.2341 | 878000 | 0.1057 |
|
1185 |
+
| 0.2344 | 879000 | 0.105 |
|
1186 |
+
| 0.2347 | 880000 | 0.1042 |
|
1187 |
+
| 0.2349 | 881000 | 0.1116 |
|
1188 |
+
| 0.2352 | 882000 | 0.1151 |
|
1189 |
+
| 0.2355 | 883000 | 0.1043 |
|
1190 |
+
| 0.2357 | 884000 | 0.1023 |
|
1191 |
+
| 0.2360 | 885000 | 0.1084 |
|
1192 |
+
| 0.2363 | 886000 | 0.1103 |
|
1193 |
+
| 0.2365 | 887000 | 0.1028 |
|
1194 |
+
| 0.2368 | 888000 | 0.1055 |
|
1195 |
+
| 0.2371 | 889000 | 0.1023 |
|
1196 |
+
| 0.2373 | 890000 | 0.1099 |
|
1197 |
+
| 0.2376 | 891000 | 0.1037 |
|
1198 |
+
| 0.2379 | 892000 | 0.1068 |
|
1199 |
+
| 0.2381 | 893000 | 0.1128 |
|
1200 |
+
| 0.2384 | 894000 | 0.1023 |
|
1201 |
+
| 0.2387 | 895000 | 0.1023 |
|
1202 |
+
| 0.2389 | 896000 | 0.106 |
|
1203 |
+
| 0.2392 | 897000 | 0.1005 |
|
1204 |
+
| 0.2395 | 898000 | 0.1013 |
|
1205 |
+
| 0.2397 | 899000 | 0.1131 |
|
1206 |
+
| 0.2400 | 900000 | 0.107 |
|
1207 |
+
| 0.2403 | 901000 | 0.1096 |
|
1208 |
+
| 0.2405 | 902000 | 0.0963 |
|
1209 |
+
| 0.2408 | 903000 | 0.1076 |
|
1210 |
+
| 0.2411 | 904000 | 0.102 |
|
1211 |
+
| 0.2413 | 905000 | 0.1147 |
|
1212 |
+
| 0.2416 | 906000 | 0.1111 |
|
1213 |
+
| 0.2419 | 907000 | 0.1035 |
|
1214 |
+
| 0.2421 | 908000 | 0.1059 |
|
1215 |
+
| 0.2424 | 909000 | 0.1037 |
|
1216 |
+
| 0.2427 | 910000 | 0.1047 |
|
1217 |
+
| 0.2429 | 911000 | 0.1049 |
|
1218 |
+
| 0.2432 | 912000 | 0.1097 |
|
1219 |
+
| 0.2435 | 913000 | 0.1062 |
|
1220 |
+
| 0.2437 | 914000 | 0.1016 |
|
1221 |
+
| 0.2440 | 915000 | 0.1061 |
|
1222 |
+
| 0.2443 | 916000 | 0.1089 |
|
1223 |
+
| 0.2445 | 917000 | 0.1032 |
|
1224 |
+
| 0.2448 | 918000 | 0.1053 |
|
1225 |
+
| 0.2451 | 919000 | 0.1075 |
|
1226 |
+
| 0.2453 | 920000 | 0.1048 |
|
1227 |
+
| 0.2456 | 921000 | 0.1007 |
|
1228 |
+
| 0.2459 | 922000 | 0.11 |
|
1229 |
+
| 0.2461 | 923000 | 0.1034 |
|
1230 |
+
| 0.2464 | 924000 | 0.1059 |
|
1231 |
+
| 0.2467 | 925000 | 0.1063 |
|
1232 |
+
| 0.2469 | 926000 | 0.1051 |
|
1233 |
+
| 0.2472 | 927000 | 0.1064 |
|
1234 |
+
| 0.2475 | 928000 | 0.0986 |
|
1235 |
+
| 0.2477 | 929000 | 0.1037 |
|
1236 |
+
| 0.2480 | 930000 | 0.1093 |
|
1237 |
+
| 0.2483 | 931000 | 0.102 |
|
1238 |
+
| 0.2485 | 932000 | 0.0985 |
|
1239 |
+
| 0.2488 | 933000 | 0.1023 |
|
1240 |
+
| 0.2491 | 934000 | 0.104 |
|
1241 |
+
| 0.2493 | 935000 | 0.1108 |
|
1242 |
+
| 0.2496 | 936000 | 0.1061 |
|
1243 |
+
| 0.2499 | 937000 | 0.1053 |
|
1244 |
+
|
1245 |
+
</details>
|
1246 |
+
|
1247 |
+
### Framework Versions
|
1248 |
+
- Python: 3.12.2
|
1249 |
+
- Sentence Transformers: 3.2.1
|
1250 |
+
- Transformers: 4.45.2
|
1251 |
+
- PyTorch: 2.5.0
|
1252 |
+
- Accelerate: 1.0.1
|
1253 |
+
- Datasets: 3.0.1
|
1254 |
+
- Tokenizers: 0.20.1
|
1255 |
+
|
1256 |
+
## Citation
|
1257 |
+
|
1258 |
+
### BibTeX
|
1259 |
+
|
1260 |
+
#### Sentence Transformers
|
1261 |
+
```bibtex
|
1262 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1263 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1264 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1265 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1266 |
+
month = "11",
|
1267 |
+
year = "2019",
|
1268 |
+
publisher = "Association for Computational Linguistics",
|
1269 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1270 |
+
}
|
1271 |
+
```
|
1272 |
+
|
1273 |
+
#### CustomTripletLoss
|
1274 |
+
```bibtex
|
1275 |
+
@misc{hermans2017defense,
|
1276 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
1277 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
1278 |
+
year={2017},
|
1279 |
+
eprint={1703.07737},
|
1280 |
+
archivePrefix={arXiv},
|
1281 |
+
primaryClass={cs.CV}
|
1282 |
+
}
|
1283 |
+
```
|
1284 |
+
|
1285 |
+
<!--
|
1286 |
+
## Glossary
|
1287 |
+
|
1288 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1289 |
+
-->
|
1290 |
+
|
1291 |
+
<!--
|
1292 |
+
## Model Card Authors
|
1293 |
+
|
1294 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1295 |
+
-->
|
1296 |
+
|
1297 |
+
<!--
|
1298 |
+
## Model Card Contact
|
1299 |
+
|
1300 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1301 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[TEXT]": 32768,
|
3 |
+
"[YEAR_RANGE]": 32769
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "pankajrajdeo/UMLS-ED-Bioformer-16L-V-1.25",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 1024,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 6,
|
17 |
+
"num_hidden_layers": 16,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.47.1",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 32770
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19904dfb5ac882107a74188ac0e1dc03fdbaa04c408cd92c497a13b2723bef3f
|
3 |
+
size 166100216
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 1024,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "[TEXT]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "[YEAR_RANGE]",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"cls_token": {
|
19 |
+
"content": "[CLS]",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"mask_token": {
|
26 |
+
"content": "[MASK]",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": {
|
33 |
+
"content": "[PAD]",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"sep_token": {
|
40 |
+
"content": "[SEP]",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
},
|
46 |
+
"unk_token": {
|
47 |
+
"content": "[UNK]",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false
|
52 |
+
}
|
53 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"32768": {
|
44 |
+
"content": "[TEXT]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"32769": {
|
52 |
+
"content": "[YEAR_RANGE]",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"additional_special_tokens": [
|
61 |
+
"[TEXT]",
|
62 |
+
"[YEAR_RANGE]"
|
63 |
+
],
|
64 |
+
"clean_up_tokenization_spaces": true,
|
65 |
+
"cls_token": "[CLS]",
|
66 |
+
"do_basic_tokenize": true,
|
67 |
+
"do_lower_case": false,
|
68 |
+
"extra_special_tokens": {},
|
69 |
+
"mask_token": "[MASK]",
|
70 |
+
"max_length": 1024,
|
71 |
+
"model_max_length": 1024,
|
72 |
+
"never_split": null,
|
73 |
+
"pad_to_multiple_of": null,
|
74 |
+
"pad_token": "[PAD]",
|
75 |
+
"pad_token_type_id": 0,
|
76 |
+
"padding_side": "right",
|
77 |
+
"sep_token": "[SEP]",
|
78 |
+
"stride": 0,
|
79 |
+
"strip_accents": null,
|
80 |
+
"tokenize_chinese_chars": true,
|
81 |
+
"tokenizer_class": "BertTokenizer",
|
82 |
+
"truncation_side": "right",
|
83 |
+
"truncation_strategy": "longest_first",
|
84 |
+
"unk_token": "[UNK]"
|
85 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|