pankajrajdeo commited on
Commit
1cdb0a1
·
verified ·
1 Parent(s): 44a756c

Add special tokens [TEXT], [YEAR_RANGE]

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:187491593
10
+ - loss:CustomTripletLoss
11
+ widget:
12
+ - source_sentence: Hylocharis xantusii
13
+ sentences:
14
+ - Xantus's hummingbird
15
+ - C5721346
16
+ - C1623532
17
+ - Iole viridescens viridescens
18
+ - source_sentence: HTLV1+2 RNA XXX Ql PCR
19
+ sentences:
20
+ - HTLV 1+2 RNA:MevcEşik:Zmlı:XXX:Srl:Prob.amf.hdf
21
+ - Nota de progreso:Tipo:Punto temporal:{Configuración}:Documento:Pain medicine
22
+ - C0368469
23
+ - C4070921
24
+ - source_sentence: Degeneração Nigroestriatal
25
+ sentences:
26
+ - C0270733
27
+ - >-
28
+ hiperinsulinismo debido a deficiencia de 3-hidroxiacil-coenzima A
29
+ deshidrogenasa de cadena corta
30
+ - Striatonigral atrophy
31
+ - C4303473
32
+ - source_sentence: Clostridioides difficile As:titer:moment:serum:semikwantitatief
33
+ sentences:
34
+ - Dehidroepiandrosteron:MevcEşik:Zmlı:İdrar:Srl
35
+ - C0485219
36
+ - C0364328
37
+ - Clostridium difficile Ac:Título:Pt:Soro:Qn
38
+ - source_sentence: E Vicotrat
39
+ sentences:
40
+ - C2742706
41
+ - C2350910
42
+ - germanium L-cysteine alpha-tocopherol complex
43
+ - Eosine I Bluish, Dipotassium Salt
44
+ base_model:
45
+ - pankajrajdeo/UMLS-ED-Bioformer-16L-V-1
46
+ ---
47
+
48
+ # SentenceTransformer
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
57
+ - **Maximum Sequence Length:** 1024 tokens
58
+ - **Output Dimensionality:** 384 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("pankajrajdeo/937457_bioformer_16L")
95
+ # Run inference
96
+ sentences = [
97
+ 'E Vicotrat',
98
+ 'Eosine I Bluish, Dipotassium Salt',
99
+ 'C2742706',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 384]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### Unnamed Dataset
152
+
153
+
154
+ * Size: 187,491,593 training samples
155
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative_id</code>, <code>positive_id</code>, and <code>negative</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | anchor | positive | negative_id | positive_id | negative |
158
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
159
+ | type | string | string | string | string | string |
160
+ | details | <ul><li>min: 3 tokens</li><li>mean: 13.27 tokens</li><li>max: 247 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.25 tokens</li><li>max: 157 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 6.27 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 6.49 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.53 tokens</li><li>max: 118 tokens</li></ul> |
161
+ * Samples:
162
+ | anchor | positive | negative_id | positive_id | negative |
163
+ |:----------------------------------------------|:------------------------------------------------------------------------------------------------|:----------------------|:----------------------|:------------------------------------------------------------------------------------------------|
164
+ | <code>Zaburzenie metabolizmu minerałów</code> | <code>Distúrbio não especificado do metabolismo de minerais</code> | <code>C2887914</code> | <code>C0154260</code> | <code>Acute alcoholic hepatic failure</code> |
165
+ | <code>testy funkčnosti placenty</code> | <code>Metoder som brukes til å vurdere morkakefunksjon.</code> | <code>C2350391</code> | <code>C0032049</code> | <code>Hjärtmuskelscintigrafi</code> |
166
+ | <code>Tsefapiriin:Susc:Pt:Is:OrdQn</code> | <code>cefapirina:susceptibilidad:punto en el tiempo:cepa clínica:ordinal o cuantitativo:</code> | <code>C0942365</code> | <code>C0801894</code> | <code>2 proyecciones:hallazgo:punto en el tiempo:tobillo.izquierdo:Narrativo:radiografía</code> |
167
+ * Loss: <code>__main__.CustomTripletLoss</code> with these parameters:
168
+ ```json
169
+ {
170
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
171
+ "triplet_margin": 5
172
+ }
173
+ ```
174
+
175
+ ### Training Hyperparameters
176
+ #### Non-Default Hyperparameters
177
+
178
+ - `per_device_train_batch_size`: 50
179
+ - `learning_rate`: 2e-05
180
+ - `num_train_epochs`: 5
181
+ - `warmup_ratio`: 0.1
182
+ - `fp16`: True
183
+
184
+ #### All Hyperparameters
185
+ <details><summary>Click to expand</summary>
186
+
187
+ - `overwrite_output_dir`: False
188
+ - `do_predict`: False
189
+ - `eval_strategy`: no
190
+ - `prediction_loss_only`: True
191
+ - `per_device_train_batch_size`: 50
192
+ - `per_device_eval_batch_size`: 8
193
+ - `per_gpu_train_batch_size`: None
194
+ - `per_gpu_eval_batch_size`: None
195
+ - `gradient_accumulation_steps`: 1
196
+ - `eval_accumulation_steps`: None
197
+ - `torch_empty_cache_steps`: None
198
+ - `learning_rate`: 2e-05
199
+ - `weight_decay`: 0.0
200
+ - `adam_beta1`: 0.9
201
+ - `adam_beta2`: 0.999
202
+ - `adam_epsilon`: 1e-08
203
+ - `max_grad_norm`: 1.0
204
+ - `num_train_epochs`: 5
205
+ - `max_steps`: -1
206
+ - `lr_scheduler_type`: linear
207
+ - `lr_scheduler_kwargs`: {}
208
+ - `warmup_ratio`: 0.1
209
+ - `warmup_steps`: 0
210
+ - `log_level`: passive
211
+ - `log_level_replica`: warning
212
+ - `log_on_each_node`: True
213
+ - `logging_nan_inf_filter`: True
214
+ - `save_safetensors`: True
215
+ - `save_on_each_node`: False
216
+ - `save_only_model`: False
217
+ - `restore_callback_states_from_checkpoint`: False
218
+ - `no_cuda`: False
219
+ - `use_cpu`: False
220
+ - `use_mps_device`: False
221
+ - `seed`: 42
222
+ - `data_seed`: None
223
+ - `jit_mode_eval`: False
224
+ - `use_ipex`: False
225
+ - `bf16`: False
226
+ - `fp16`: True
227
+ - `fp16_opt_level`: O1
228
+ - `half_precision_backend`: auto
229
+ - `bf16_full_eval`: False
230
+ - `fp16_full_eval`: False
231
+ - `tf32`: None
232
+ - `local_rank`: 0
233
+ - `ddp_backend`: None
234
+ - `tpu_num_cores`: None
235
+ - `tpu_metrics_debug`: False
236
+ - `debug`: []
237
+ - `dataloader_drop_last`: False
238
+ - `dataloader_num_workers`: 0
239
+ - `dataloader_prefetch_factor`: None
240
+ - `past_index`: -1
241
+ - `disable_tqdm`: False
242
+ - `remove_unused_columns`: True
243
+ - `label_names`: None
244
+ - `load_best_model_at_end`: False
245
+ - `ignore_data_skip`: False
246
+ - `fsdp`: []
247
+ - `fsdp_min_num_params`: 0
248
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
249
+ - `fsdp_transformer_layer_cls_to_wrap`: None
250
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
251
+ - `deepspeed`: None
252
+ - `label_smoothing_factor`: 0.0
253
+ - `optim`: adamw_torch
254
+ - `optim_args`: None
255
+ - `adafactor`: False
256
+ - `group_by_length`: False
257
+ - `length_column_name`: length
258
+ - `ddp_find_unused_parameters`: None
259
+ - `ddp_bucket_cap_mb`: None
260
+ - `ddp_broadcast_buffers`: False
261
+ - `dataloader_pin_memory`: True
262
+ - `dataloader_persistent_workers`: False
263
+ - `skip_memory_metrics`: True
264
+ - `use_legacy_prediction_loop`: False
265
+ - `push_to_hub`: False
266
+ - `resume_from_checkpoint`: None
267
+ - `hub_model_id`: None
268
+ - `hub_strategy`: every_save
269
+ - `hub_private_repo`: False
270
+ - `hub_always_push`: False
271
+ - `gradient_checkpointing`: False
272
+ - `gradient_checkpointing_kwargs`: None
273
+ - `include_inputs_for_metrics`: False
274
+ - `eval_do_concat_batches`: True
275
+ - `fp16_backend`: auto
276
+ - `push_to_hub_model_id`: None
277
+ - `push_to_hub_organization`: None
278
+ - `mp_parameters`:
279
+ - `auto_find_batch_size`: False
280
+ - `full_determinism`: False
281
+ - `torchdynamo`: None
282
+ - `ray_scope`: last
283
+ - `ddp_timeout`: 1800
284
+ - `torch_compile`: False
285
+ - `torch_compile_backend`: None
286
+ - `torch_compile_mode`: None
287
+ - `dispatch_batches`: None
288
+ - `split_batches`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_eval_metrics`: False
294
+ - `eval_on_start`: False
295
+ - `use_liger_kernel`: False
296
+ - `eval_use_gather_object`: False
297
+ - `batch_sampler`: batch_sampler
298
+ - `multi_dataset_batch_sampler`: proportional
299
+
300
+ </details>
301
+
302
+ ### Training Logs
303
+ <details><summary>Click to expand</summary>
304
+
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:------:|:-------------:|
307
+ | 0.0003 | 1000 | 1.0069 |
308
+ | 0.0005 | 2000 | 0.9728 |
309
+ | 0.0008 | 3000 | 0.9549 |
310
+ | 0.0011 | 4000 | 0.9217 |
311
+ | 0.0013 | 5000 | 0.9116 |
312
+ | 0.0016 | 6000 | 0.8662 |
313
+ | 0.0019 | 7000 | 0.8412 |
314
+ | 0.0021 | 8000 | 0.7979 |
315
+ | 0.0024 | 9000 | 0.7829 |
316
+ | 0.0027 | 10000 | 0.7578 |
317
+ | 0.0029 | 11000 | 0.7402 |
318
+ | 0.0032 | 12000 | 0.7069 |
319
+ | 0.0035 | 13000 | 0.6906 |
320
+ | 0.0037 | 14000 | 0.6644 |
321
+ | 0.0040 | 15000 | 0.6516 |
322
+ | 0.0043 | 16000 | 0.6344 |
323
+ | 0.0045 | 17000 | 0.6395 |
324
+ | 0.0048 | 18000 | 0.6082 |
325
+ | 0.0051 | 19000 | 0.5944 |
326
+ | 0.0053 | 20000 | 0.5955 |
327
+ | 0.0056 | 21000 | 0.576 |
328
+ | 0.0059 | 22000 | 0.5723 |
329
+ | 0.0061 | 23000 | 0.5475 |
330
+ | 0.0064 | 24000 | 0.5452 |
331
+ | 0.0067 | 25000 | 0.5485 |
332
+ | 0.0069 | 26000 | 0.5143 |
333
+ | 0.0072 | 27000 | 0.5062 |
334
+ | 0.0075 | 28000 | 0.5118 |
335
+ | 0.0077 | 29000 | 0.4992 |
336
+ | 0.0080 | 30000 | 0.5031 |
337
+ | 0.0083 | 31000 | 0.4762 |
338
+ | 0.0085 | 32000 | 0.4773 |
339
+ | 0.0088 | 33000 | 0.4742 |
340
+ | 0.0091 | 34000 | 0.4692 |
341
+ | 0.0093 | 35000 | 0.464 |
342
+ | 0.0096 | 36000 | 0.4687 |
343
+ | 0.0099 | 37000 | 0.4592 |
344
+ | 0.0101 | 38000 | 0.4468 |
345
+ | 0.0104 | 39000 | 0.4425 |
346
+ | 0.0107 | 40000 | 0.4477 |
347
+ | 0.0109 | 41000 | 0.4336 |
348
+ | 0.0112 | 42000 | 0.4331 |
349
+ | 0.0115 | 43000 | 0.4248 |
350
+ | 0.0117 | 44000 | 0.4189 |
351
+ | 0.0120 | 45000 | 0.4147 |
352
+ | 0.0123 | 46000 | 0.4112 |
353
+ | 0.0125 | 47000 | 0.4051 |
354
+ | 0.0128 | 48000 | 0.399 |
355
+ | 0.0131 | 49000 | 0.3921 |
356
+ | 0.0133 | 50000 | 0.3917 |
357
+ | 0.0136 | 51000 | 0.4058 |
358
+ | 0.0139 | 52000 | 0.3843 |
359
+ | 0.0141 | 53000 | 0.3811 |
360
+ | 0.0144 | 54000 | 0.3733 |
361
+ | 0.0147 | 55000 | 0.3787 |
362
+ | 0.0149 | 56000 | 0.3859 |
363
+ | 0.0152 | 57000 | 0.3742 |
364
+ | 0.0155 | 58000 | 0.3682 |
365
+ | 0.0157 | 59000 | 0.3705 |
366
+ | 0.0160 | 60000 | 0.3483 |
367
+ | 0.0163 | 61000 | 0.3469 |
368
+ | 0.0165 | 62000 | 0.3586 |
369
+ | 0.0168 | 63000 | 0.3346 |
370
+ | 0.0171 | 64000 | 0.3474 |
371
+ | 0.0173 | 65000 | 0.3625 |
372
+ | 0.0176 | 66000 | 0.3501 |
373
+ | 0.0179 | 67000 | 0.3456 |
374
+ | 0.0181 | 68000 | 0.3383 |
375
+ | 0.0184 | 69000 | 0.3457 |
376
+ | 0.0187 | 70000 | 0.3437 |
377
+ | 0.0189 | 71000 | 0.3395 |
378
+ | 0.0192 | 72000 | 0.3399 |
379
+ | 0.0195 | 73000 | 0.324 |
380
+ | 0.0197 | 74000 | 0.338 |
381
+ | 0.0200 | 75000 | 0.3268 |
382
+ | 0.0203 | 76000 | 0.3298 |
383
+ | 0.0205 | 77000 | 0.3282 |
384
+ | 0.0208 | 78000 | 0.3356 |
385
+ | 0.0211 | 79000 | 0.3187 |
386
+ | 0.0213 | 80000 | 0.3155 |
387
+ | 0.0216 | 81000 | 0.3181 |
388
+ | 0.0219 | 82000 | 0.3085 |
389
+ | 0.0221 | 83000 | 0.3168 |
390
+ | 0.0224 | 84000 | 0.3162 |
391
+ | 0.0227 | 85000 | 0.3126 |
392
+ | 0.0229 | 86000 | 0.3026 |
393
+ | 0.0232 | 87000 | 0.3017 |
394
+ | 0.0235 | 88000 | 0.2963 |
395
+ | 0.0237 | 89000 | 0.3002 |
396
+ | 0.0240 | 90000 | 0.297 |
397
+ | 0.0243 | 91000 | 0.2993 |
398
+ | 0.0245 | 92000 | 0.306 |
399
+ | 0.0248 | 93000 | 0.2964 |
400
+ | 0.0251 | 94000 | 0.2992 |
401
+ | 0.0253 | 95000 | 0.2921 |
402
+ | 0.0256 | 96000 | 0.3103 |
403
+ | 0.0259 | 97000 | 0.2897 |
404
+ | 0.0261 | 98000 | 0.2843 |
405
+ | 0.0264 | 99000 | 0.2914 |
406
+ | 0.0267 | 100000 | 0.2952 |
407
+ | 0.0269 | 101000 | 0.2922 |
408
+ | 0.0272 | 102000 | 0.2807 |
409
+ | 0.0275 | 103000 | 0.2797 |
410
+ | 0.0277 | 104000 | 0.2849 |
411
+ | 0.0280 | 105000 | 0.2959 |
412
+ | 0.0283 | 106000 | 0.2823 |
413
+ | 0.0285 | 107000 | 0.2637 |
414
+ | 0.0288 | 108000 | 0.2804 |
415
+ | 0.0291 | 109000 | 0.2761 |
416
+ | 0.0293 | 110000 | 0.2821 |
417
+ | 0.0296 | 111000 | 0.2876 |
418
+ | 0.0299 | 112000 | 0.2699 |
419
+ | 0.0301 | 113000 | 0.2758 |
420
+ | 0.0304 | 114000 | 0.2802 |
421
+ | 0.0307 | 115000 | 0.2689 |
422
+ | 0.0309 | 116000 | 0.2871 |
423
+ | 0.0312 | 117000 | 0.2603 |
424
+ | 0.0315 | 118000 | 0.2728 |
425
+ | 0.0317 | 119000 | 0.2769 |
426
+ | 0.0320 | 120000 | 0.2527 |
427
+ | 0.0323 | 121000 | 0.2677 |
428
+ | 0.0325 | 122000 | 0.2748 |
429
+ | 0.0328 | 123000 | 0.2648 |
430
+ | 0.0331 | 124000 | 0.2645 |
431
+ | 0.0333 | 125000 | 0.2637 |
432
+ | 0.0336 | 126000 | 0.2613 |
433
+ | 0.0339 | 127000 | 0.261 |
434
+ | 0.0341 | 128000 | 0.2568 |
435
+ | 0.0344 | 129000 | 0.2611 |
436
+ | 0.0347 | 130000 | 0.2486 |
437
+ | 0.0349 | 131000 | 0.2535 |
438
+ | 0.0352 | 132000 | 0.2525 |
439
+ | 0.0355 | 133000 | 0.2457 |
440
+ | 0.0357 | 134000 | 0.2545 |
441
+ | 0.0360 | 135000 | 0.2596 |
442
+ | 0.0363 | 136000 | 0.2505 |
443
+ | 0.0365 | 137000 | 0.2454 |
444
+ | 0.0368 | 138000 | 0.2696 |
445
+ | 0.0371 | 139000 | 0.2567 |
446
+ | 0.0373 | 140000 | 0.2517 |
447
+ | 0.0376 | 141000 | 0.2436 |
448
+ | 0.0379 | 142000 | 0.2452 |
449
+ | 0.0381 | 143000 | 0.2427 |
450
+ | 0.0384 | 144000 | 0.2525 |
451
+ | 0.0387 | 145000 | 0.243 |
452
+ | 0.0389 | 146000 | 0.2417 |
453
+ | 0.0392 | 147000 | 0.2599 |
454
+ | 0.0395 | 148000 | 0.246 |
455
+ | 0.0397 | 149000 | 0.2379 |
456
+ | 0.0400 | 150000 | 0.2449 |
457
+ | 0.0403 | 151000 | 0.2333 |
458
+ | 0.0405 | 152000 | 0.2399 |
459
+ | 0.0408 | 153000 | 0.2409 |
460
+ | 0.0411 | 154000 | 0.2407 |
461
+ | 0.0413 | 155000 | 0.2369 |
462
+ | 0.0416 | 156000 | 0.2361 |
463
+ | 0.0419 | 157000 | 0.2331 |
464
+ | 0.0421 | 158000 | 0.232 |
465
+ | 0.0424 | 159000 | 0.2337 |
466
+ | 0.0427 | 160000 | 0.2331 |
467
+ | 0.0429 | 161000 | 0.2328 |
468
+ | 0.0432 | 162000 | 0.2278 |
469
+ | 0.0435 | 163000 | 0.2335 |
470
+ | 0.0437 | 164000 | 0.2301 |
471
+ | 0.0440 | 165000 | 0.2381 |
472
+ | 0.0443 | 166000 | 0.2298 |
473
+ | 0.0445 | 167000 | 0.2355 |
474
+ | 0.0448 | 168000 | 0.2254 |
475
+ | 0.0451 | 169000 | 0.2301 |
476
+ | 0.0453 | 170000 | 0.2319 |
477
+ | 0.0456 | 171000 | 0.2314 |
478
+ | 0.0459 | 172000 | 0.236 |
479
+ | 0.0461 | 173000 | 0.2348 |
480
+ | 0.0464 | 174000 | 0.231 |
481
+ | 0.0467 | 175000 | 0.2291 |
482
+ | 0.0469 | 176000 | 0.2246 |
483
+ | 0.0472 | 177000 | 0.2259 |
484
+ | 0.0475 | 178000 | 0.2254 |
485
+ | 0.0477 | 179000 | 0.2223 |
486
+ | 0.0480 | 180000 | 0.2285 |
487
+ | 0.0483 | 181000 | 0.2306 |
488
+ | 0.0485 | 182000 | 0.2233 |
489
+ | 0.0488 | 183000 | 0.2117 |
490
+ | 0.0491 | 184000 | 0.2219 |
491
+ | 0.0493 | 185000 | 0.2226 |
492
+ | 0.0496 | 186000 | 0.2161 |
493
+ | 0.0499 | 187000 | 0.2195 |
494
+ | 0.0501 | 188000 | 0.2208 |
495
+ | 0.0504 | 189000 | 0.2198 |
496
+ | 0.0507 | 190000 | 0.2236 |
497
+ | 0.0509 | 191000 | 0.2178 |
498
+ | 0.0512 | 192000 | 0.2087 |
499
+ | 0.0515 | 193000 | 0.2222 |
500
+ | 0.0517 | 194000 | 0.211 |
501
+ | 0.0520 | 195000 | 0.2287 |
502
+ | 0.0523 | 196000 | 0.2219 |
503
+ | 0.0525 | 197000 | 0.2096 |
504
+ | 0.0528 | 198000 | 0.2112 |
505
+ | 0.0531 | 199000 | 0.2108 |
506
+ | 0.0533 | 200000 | 0.2098 |
507
+ | 0.0536 | 201000 | 0.2176 |
508
+ | 0.0539 | 202000 | 0.2118 |
509
+ | 0.0541 | 203000 | 0.2248 |
510
+ | 0.0544 | 204000 | 0.2124 |
511
+ | 0.0547 | 205000 | 0.2133 |
512
+ | 0.0549 | 206000 | 0.2101 |
513
+ | 0.0552 | 207000 | 0.208 |
514
+ | 0.0555 | 208000 | 0.2129 |
515
+ | 0.0557 | 209000 | 0.208 |
516
+ | 0.0560 | 210000 | 0.2093 |
517
+ | 0.0563 | 211000 | 0.2123 |
518
+ | 0.0565 | 212000 | 0.205 |
519
+ | 0.0568 | 213000 | 0.2012 |
520
+ | 0.0571 | 214000 | 0.2078 |
521
+ | 0.0573 | 215000 | 0.2107 |
522
+ | 0.0576 | 216000 | 0.206 |
523
+ | 0.0579 | 217000 | 0.2055 |
524
+ | 0.0581 | 218000 | 0.2067 |
525
+ | 0.0584 | 219000 | 0.2143 |
526
+ | 0.0587 | 220000 | 0.204 |
527
+ | 0.0589 | 221000 | 0.2071 |
528
+ | 0.0592 | 222000 | 0.2026 |
529
+ | 0.0595 | 223000 | 0.1994 |
530
+ | 0.0597 | 224000 | 0.2045 |
531
+ | 0.0600 | 225000 | 0.2155 |
532
+ | 0.0603 | 226000 | 0.2075 |
533
+ | 0.0605 | 227000 | 0.195 |
534
+ | 0.0608 | 228000 | 0.2028 |
535
+ | 0.0611 | 229000 | 0.1973 |
536
+ | 0.0613 | 230000 | 0.2034 |
537
+ | 0.0616 | 231000 | 0.2039 |
538
+ | 0.0619 | 232000 | 0.1937 |
539
+ | 0.0621 | 233000 | 0.2 |
540
+ | 0.0624 | 234000 | 0.1958 |
541
+ | 0.0627 | 235000 | 0.1986 |
542
+ | 0.0629 | 236000 | 0.1975 |
543
+ | 0.0632 | 237000 | 0.2061 |
544
+ | 0.0635 | 238000 | 0.2021 |
545
+ | 0.0637 | 239000 | 0.1957 |
546
+ | 0.0640 | 240000 | 0.1997 |
547
+ | 0.0643 | 241000 | 0.1968 |
548
+ | 0.0645 | 242000 | 0.1881 |
549
+ | 0.0648 | 243000 | 0.2038 |
550
+ | 0.0651 | 244000 | 0.1991 |
551
+ | 0.0653 | 245000 | 0.1841 |
552
+ | 0.0656 | 246000 | 0.1919 |
553
+ | 0.0659 | 247000 | 0.187 |
554
+ | 0.0661 | 248000 | 0.1889 |
555
+ | 0.0664 | 249000 | 0.1987 |
556
+ | 0.0667 | 250000 | 0.1992 |
557
+ | 0.0669 | 251000 | 0.1913 |
558
+ | 0.0672 | 252000 | 0.1995 |
559
+ | 0.0675 | 253000 | 0.1875 |
560
+ | 0.0677 | 254000 | 0.1923 |
561
+ | 0.0680 | 255000 | 0.1773 |
562
+ | 0.0683 | 256000 | 0.1869 |
563
+ | 0.0685 | 257000 | 0.1975 |
564
+ | 0.0688 | 258000 | 0.1865 |
565
+ | 0.0691 | 259000 | 0.1889 |
566
+ | 0.0693 | 260000 | 0.1896 |
567
+ | 0.0696 | 261000 | 0.1829 |
568
+ | 0.0699 | 262000 | 0.1843 |
569
+ | 0.0701 | 263000 | 0.195 |
570
+ | 0.0704 | 264000 | 0.1818 |
571
+ | 0.0707 | 265000 | 0.1855 |
572
+ | 0.0709 | 266000 | 0.1841 |
573
+ | 0.0712 | 267000 | 0.1889 |
574
+ | 0.0715 | 268000 | 0.1814 |
575
+ | 0.0717 | 269000 | 0.1917 |
576
+ | 0.0720 | 270000 | 0.1862 |
577
+ | 0.0723 | 271000 | 0.1869 |
578
+ | 0.0725 | 272000 | 0.1859 |
579
+ | 0.0728 | 273000 | 0.182 |
580
+ | 0.0731 | 274000 | 0.1896 |
581
+ | 0.0733 | 275000 | 0.1936 |
582
+ | 0.0736 | 276000 | 0.1846 |
583
+ | 0.0739 | 277000 | 0.18 |
584
+ | 0.0741 | 278000 | 0.1812 |
585
+ | 0.0744 | 279000 | 0.1859 |
586
+ | 0.0747 | 280000 | 0.1785 |
587
+ | 0.0749 | 281000 | 0.1806 |
588
+ | 0.0752 | 282000 | 0.182 |
589
+ | 0.0755 | 283000 | 0.1848 |
590
+ | 0.0757 | 284000 | 0.1798 |
591
+ | 0.0760 | 285000 | 0.1853 |
592
+ | 0.0763 | 286000 | 0.1834 |
593
+ | 0.0765 | 287000 | 0.1815 |
594
+ | 0.0768 | 288000 | 0.1819 |
595
+ | 0.0771 | 289000 | 0.1808 |
596
+ | 0.0773 | 290000 | 0.1851 |
597
+ | 0.0776 | 291000 | 0.1823 |
598
+ | 0.0779 | 292000 | 0.179 |
599
+ | 0.0781 | 293000 | 0.1825 |
600
+ | 0.0784 | 294000 | 0.1751 |
601
+ | 0.0787 | 295000 | 0.1778 |
602
+ | 0.0789 | 296000 | 0.1773 |
603
+ | 0.0792 | 297000 | 0.1795 |
604
+ | 0.0795 | 298000 | 0.1854 |
605
+ | 0.0797 | 299000 | 0.1818 |
606
+ | 0.0800 | 300000 | 0.1734 |
607
+ | 0.0803 | 301000 | 0.1787 |
608
+ | 0.0805 | 302000 | 0.1807 |
609
+ | 0.0808 | 303000 | 0.1817 |
610
+ | 0.0811 | 304000 | 0.1722 |
611
+ | 0.0813 | 305000 | 0.1762 |
612
+ | 0.0816 | 306000 | 0.1741 |
613
+ | 0.0819 | 307000 | 0.1754 |
614
+ | 0.0821 | 308000 | 0.1713 |
615
+ | 0.0824 | 309000 | 0.1724 |
616
+ | 0.0827 | 310000 | 0.1745 |
617
+ | 0.0829 | 311000 | 0.1774 |
618
+ | 0.0832 | 312000 | 0.1763 |
619
+ | 0.0835 | 313000 | 0.1768 |
620
+ | 0.0837 | 314000 | 0.1717 |
621
+ | 0.0840 | 315000 | 0.1692 |
622
+ | 0.0843 | 316000 | 0.1721 |
623
+ | 0.0845 | 317000 | 0.1673 |
624
+ | 0.0848 | 318000 | 0.1762 |
625
+ | 0.0851 | 319000 | 0.1784 |
626
+ | 0.0853 | 320000 | 0.1697 |
627
+ | 0.0856 | 321000 | 0.172 |
628
+ | 0.0859 | 322000 | 0.1658 |
629
+ | 0.0861 | 323000 | 0.1761 |
630
+ | 0.0864 | 324000 | 0.1729 |
631
+ | 0.0867 | 325000 | 0.1672 |
632
+ | 0.0869 | 326000 | 0.1671 |
633
+ | 0.0872 | 327000 | 0.1685 |
634
+ | 0.0875 | 328000 | 0.1729 |
635
+ | 0.0877 | 329000 | 0.166 |
636
+ | 0.0880 | 330000 | 0.1712 |
637
+ | 0.0883 | 331000 | 0.1737 |
638
+ | 0.0885 | 332000 | 0.1723 |
639
+ | 0.0888 | 333000 | 0.1705 |
640
+ | 0.0891 | 334000 | 0.1718 |
641
+ | 0.0893 | 335000 | 0.1689 |
642
+ | 0.0896 | 336000 | 0.1747 |
643
+ | 0.0899 | 337000 | 0.1696 |
644
+ | 0.0901 | 338000 | 0.1712 |
645
+ | 0.0904 | 339000 | 0.1674 |
646
+ | 0.0907 | 340000 | 0.1709 |
647
+ | 0.0909 | 341000 | 0.169 |
648
+ | 0.0912 | 342000 | 0.1714 |
649
+ | 0.0915 | 343000 | 0.1544 |
650
+ | 0.0917 | 344000 | 0.1755 |
651
+ | 0.0920 | 345000 | 0.1689 |
652
+ | 0.0923 | 346000 | 0.1561 |
653
+ | 0.0925 | 347000 | 0.1712 |
654
+ | 0.0928 | 348000 | 0.1583 |
655
+ | 0.0931 | 349000 | 0.159 |
656
+ | 0.0933 | 350000 | 0.1715 |
657
+ | 0.0936 | 351000 | 0.1608 |
658
+ | 0.0939 | 352000 | 0.1703 |
659
+ | 0.0941 | 353000 | 0.1682 |
660
+ | 0.0944 | 354000 | 0.1622 |
661
+ | 0.0947 | 355000 | 0.1663 |
662
+ | 0.0949 | 356000 | 0.1632 |
663
+ | 0.0952 | 357000 | 0.1663 |
664
+ | 0.0955 | 358000 | 0.1643 |
665
+ | 0.0957 | 359000 | 0.1674 |
666
+ | 0.0960 | 360000 | 0.1634 |
667
+ | 0.0963 | 361000 | 0.1616 |
668
+ | 0.0965 | 362000 | 0.1691 |
669
+ | 0.0968 | 363000 | 0.1594 |
670
+ | 0.0971 | 364000 | 0.1589 |
671
+ | 0.0973 | 365000 | 0.1568 |
672
+ | 0.0976 | 366000 | 0.1586 |
673
+ | 0.0979 | 367000 | 0.1555 |
674
+ | 0.0981 | 368000 | 0.161 |
675
+ | 0.0984 | 369000 | 0.1615 |
676
+ | 0.0987 | 370000 | 0.1691 |
677
+ | 0.0989 | 371000 | 0.151 |
678
+ | 0.0992 | 372000 | 0.1653 |
679
+ | 0.0995 | 373000 | 0.1545 |
680
+ | 0.0997 | 374000 | 0.1627 |
681
+ | 0.1000 | 375000 | 0.1688 |
682
+ | 0.1003 | 376000 | 0.1594 |
683
+ | 0.1005 | 377000 | 0.1619 |
684
+ | 0.1008 | 378000 | 0.1517 |
685
+ | 0.1011 | 379000 | 0.1605 |
686
+ | 0.1013 | 380000 | 0.1576 |
687
+ | 0.1016 | 381000 | 0.1589 |
688
+ | 0.1019 | 382000 | 0.1643 |
689
+ | 0.1021 | 383000 | 0.164 |
690
+ | 0.1024 | 384000 | 0.158 |
691
+ | 0.1027 | 385000 | 0.1584 |
692
+ | 0.1029 | 386000 | 0.1565 |
693
+ | 0.1032 | 387000 | 0.1566 |
694
+ | 0.1035 | 388000 | 0.1625 |
695
+ | 0.1037 | 389000 | 0.1569 |
696
+ | 0.1040 | 390000 | 0.159 |
697
+ | 0.1043 | 391000 | 0.1541 |
698
+ | 0.1045 | 392000 | 0.159 |
699
+ | 0.1048 | 393000 | 0.1536 |
700
+ | 0.1051 | 394000 | 0.166 |
701
+ | 0.1053 | 395000 | 0.1639 |
702
+ | 0.1056 | 396000 | 0.1491 |
703
+ | 0.1059 | 397000 | 0.1567 |
704
+ | 0.1061 | 398000 | 0.1566 |
705
+ | 0.1064 | 399000 | 0.1641 |
706
+ | 0.1067 | 400000 | 0.1552 |
707
+ | 0.1069 | 401000 | 0.1476 |
708
+ | 0.1072 | 402000 | 0.157 |
709
+ | 0.1075 | 403000 | 0.1538 |
710
+ | 0.1077 | 404000 | 0.152 |
711
+ | 0.1080 | 405000 | 0.1525 |
712
+ | 0.1083 | 406000 | 0.155 |
713
+ | 0.1085 | 407000 | 0.1538 |
714
+ | 0.1088 | 408000 | 0.1506 |
715
+ | 0.1091 | 409000 | 0.1481 |
716
+ | 0.1093 | 410000 | 0.1603 |
717
+ | 0.1096 | 411000 | 0.1509 |
718
+ | 0.1099 | 412000 | 0.1628 |
719
+ | 0.1101 | 413000 | 0.151 |
720
+ | 0.1104 | 414000 | 0.1581 |
721
+ | 0.1107 | 415000 | 0.1511 |
722
+ | 0.1109 | 416000 | 0.1552 |
723
+ | 0.1112 | 417000 | 0.1553 |
724
+ | 0.1115 | 418000 | 0.1508 |
725
+ | 0.1117 | 419000 | 0.1515 |
726
+ | 0.1120 | 420000 | 0.1526 |
727
+ | 0.1123 | 421000 | 0.15 |
728
+ | 0.1125 | 422000 | 0.1497 |
729
+ | 0.1128 | 423000 | 0.1526 |
730
+ | 0.1131 | 424000 | 0.1547 |
731
+ | 0.1133 | 425000 | 0.151 |
732
+ | 0.1136 | 426000 | 0.1471 |
733
+ | 0.1139 | 427000 | 0.1576 |
734
+ | 0.1141 | 428000 | 0.1522 |
735
+ | 0.1144 | 429000 | 0.1506 |
736
+ | 0.1147 | 430000 | 0.1495 |
737
+ | 0.1149 | 431000 | 0.1518 |
738
+ | 0.1152 | 432000 | 0.1467 |
739
+ | 0.1155 | 433000 | 0.1511 |
740
+ | 0.1157 | 434000 | 0.1516 |
741
+ | 0.1160 | 435000 | 0.1476 |
742
+ | 0.1163 | 436000 | 0.1526 |
743
+ | 0.1165 | 437000 | 0.1474 |
744
+ | 0.1168 | 438000 | 0.1445 |
745
+ | 0.1171 | 439000 | 0.1408 |
746
+ | 0.1173 | 440000 | 0.1412 |
747
+ | 0.1176 | 441000 | 0.1445 |
748
+ | 0.1179 | 442000 | 0.145 |
749
+ | 0.1181 | 443000 | 0.1402 |
750
+ | 0.1184 | 444000 | 0.154 |
751
+ | 0.1187 | 445000 | 0.1446 |
752
+ | 0.1189 | 446000 | 0.1476 |
753
+ | 0.1192 | 447000 | 0.1565 |
754
+ | 0.1195 | 448000 | 0.1409 |
755
+ | 0.1197 | 449000 | 0.1511 |
756
+ | 0.1200 | 450000 | 0.139 |
757
+ | 0.1203 | 451000 | 0.1463 |
758
+ | 0.1205 | 452000 | 0.1453 |
759
+ | 0.1208 | 453000 | 0.1432 |
760
+ | 0.1211 | 454000 | 0.1559 |
761
+ | 0.1213 | 455000 | 0.1354 |
762
+ | 0.1216 | 456000 | 0.1419 |
763
+ | 0.1219 | 457000 | 0.1452 |
764
+ | 0.1221 | 458000 | 0.147 |
765
+ | 0.1224 | 459000 | 0.1453 |
766
+ | 0.1227 | 460000 | 0.153 |
767
+ | 0.1229 | 461000 | 0.1496 |
768
+ | 0.1232 | 462000 | 0.1464 |
769
+ | 0.1235 | 463000 | 0.1423 |
770
+ | 0.1237 | 464000 | 0.1403 |
771
+ | 0.1240 | 465000 | 0.1458 |
772
+ | 0.1243 | 466000 | 0.1508 |
773
+ | 0.1245 | 467000 | 0.1442 |
774
+ | 0.1248 | 468000 | 0.1521 |
775
+ | 0.1251 | 469000 | 0.1424 |
776
+ | 0.1253 | 470000 | 0.1545 |
777
+ | 0.1256 | 471000 | 0.1389 |
778
+ | 0.1259 | 472000 | 0.1408 |
779
+ | 0.1261 | 473000 | 0.1398 |
780
+ | 0.1264 | 474000 | 0.1333 |
781
+ | 0.1267 | 475000 | 0.1436 |
782
+ | 0.1269 | 476000 | 0.1423 |
783
+ | 0.1272 | 477000 | 0.1393 |
784
+ | 0.1275 | 478000 | 0.1465 |
785
+ | 0.1277 | 479000 | 0.1484 |
786
+ | 0.1280 | 480000 | 0.1412 |
787
+ | 0.1283 | 481000 | 0.143 |
788
+ | 0.1285 | 482000 | 0.139 |
789
+ | 0.1288 | 483000 | 0.1447 |
790
+ | 0.1291 | 484000 | 0.1388 |
791
+ | 0.1293 | 485000 | 0.1414 |
792
+ | 0.1296 | 486000 | 0.1444 |
793
+ | 0.1299 | 487000 | 0.1365 |
794
+ | 0.1301 | 488000 | 0.1403 |
795
+ | 0.1304 | 489000 | 0.1398 |
796
+ | 0.1307 | 490000 | 0.1302 |
797
+ | 0.1309 | 491000 | 0.1443 |
798
+ | 0.1312 | 492000 | 0.1402 |
799
+ | 0.1315 | 493000 | 0.1451 |
800
+ | 0.1317 | 494000 | 0.1397 |
801
+ | 0.1320 | 495000 | 0.137 |
802
+ | 0.1323 | 496000 | 0.1493 |
803
+ | 0.1325 | 497000 | 0.1415 |
804
+ | 0.1328 | 498000 | 0.1365 |
805
+ | 0.1331 | 499000 | 0.1323 |
806
+ | 0.1333 | 500000 | 0.1384 |
807
+ | 0.1336 | 501000 | 0.1307 |
808
+ | 0.1339 | 502000 | 0.1385 |
809
+ | 0.1341 | 503000 | 0.1394 |
810
+ | 0.1344 | 504000 | 0.1393 |
811
+ | 0.1347 | 505000 | 0.1455 |
812
+ | 0.1349 | 506000 | 0.1374 |
813
+ | 0.1352 | 507000 | 0.1381 |
814
+ | 0.1355 | 508000 | 0.1363 |
815
+ | 0.1357 | 509000 | 0.1392 |
816
+ | 0.1360 | 510000 | 0.1399 |
817
+ | 0.1363 | 511000 | 0.1356 |
818
+ | 0.1365 | 512000 | 0.1395 |
819
+ | 0.1368 | 513000 | 0.1402 |
820
+ | 0.1371 | 514000 | 0.1382 |
821
+ | 0.1373 | 515000 | 0.1408 |
822
+ | 0.1376 | 516000 | 0.1398 |
823
+ | 0.1379 | 517000 | 0.1405 |
824
+ | 0.1381 | 518000 | 0.1351 |
825
+ | 0.1384 | 519000 | 0.1371 |
826
+ | 0.1387 | 520000 | 0.1302 |
827
+ | 0.1389 | 521000 | 0.14 |
828
+ | 0.1392 | 522000 | 0.1363 |
829
+ | 0.1395 | 523000 | 0.1313 |
830
+ | 0.1397 | 524000 | 0.1299 |
831
+ | 0.1400 | 525000 | 0.1372 |
832
+ | 0.1403 | 526000 | 0.1416 |
833
+ | 0.1405 | 527000 | 0.1295 |
834
+ | 0.1408 | 528000 | 0.1359 |
835
+ | 0.1411 | 529000 | 0.1383 |
836
+ | 0.1413 | 530000 | 0.1378 |
837
+ | 0.1416 | 531000 | 0.135 |
838
+ | 0.1419 | 532000 | 0.1405 |
839
+ | 0.1421 | 533000 | 0.14 |
840
+ | 0.1424 | 534000 | 0.1321 |
841
+ | 0.1427 | 535000 | 0.1303 |
842
+ | 0.1429 | 536000 | 0.1319 |
843
+ | 0.1432 | 537000 | 0.1312 |
844
+ | 0.1435 | 538000 | 0.1338 |
845
+ | 0.1437 | 539000 | 0.1361 |
846
+ | 0.1440 | 540000 | 0.139 |
847
+ | 0.1443 | 541000 | 0.1364 |
848
+ | 0.1445 | 542000 | 0.1316 |
849
+ | 0.1448 | 543000 | 0.1331 |
850
+ | 0.1451 | 544000 | 0.1269 |
851
+ | 0.1453 | 545000 | 0.1294 |
852
+ | 0.1456 | 546000 | 0.135 |
853
+ | 0.1459 | 547000 | 0.1328 |
854
+ | 0.1461 | 548000 | 0.1296 |
855
+ | 0.1464 | 549000 | 0.1305 |
856
+ | 0.1467 | 550000 | 0.1334 |
857
+ | 0.1469 | 551000 | 0.1362 |
858
+ | 0.1472 | 552000 | 0.1318 |
859
+ | 0.1475 | 553000 | 0.1312 |
860
+ | 0.1477 | 554000 | 0.1293 |
861
+ | 0.1480 | 555000 | 0.1324 |
862
+ | 0.1483 | 556000 | 0.1256 |
863
+ | 0.1485 | 557000 | 0.1227 |
864
+ | 0.1488 | 558000 | 0.1239 |
865
+ | 0.1491 | 559000 | 0.1287 |
866
+ | 0.1493 | 560000 | 0.1307 |
867
+ | 0.1496 | 561000 | 0.1336 |
868
+ | 0.1499 | 562000 | 0.133 |
869
+ | 0.1501 | 563000 | 0.1278 |
870
+ | 0.1504 | 564000 | 0.1339 |
871
+ | 0.1507 | 565000 | 0.1321 |
872
+ | 0.1509 | 566000 | 0.1322 |
873
+ | 0.1512 | 567000 | 0.1262 |
874
+ | 0.1515 | 568000 | 0.1331 |
875
+ | 0.1517 | 569000 | 0.1361 |
876
+ | 0.1520 | 570000 | 0.1307 |
877
+ | 0.1523 | 571000 | 0.133 |
878
+ | 0.1525 | 572000 | 0.1293 |
879
+ | 0.1528 | 573000 | 0.1283 |
880
+ | 0.1531 | 574000 | 0.1275 |
881
+ | 0.1533 | 575000 | 0.1329 |
882
+ | 0.1536 | 576000 | 0.1307 |
883
+ | 0.1539 | 577000 | 0.1245 |
884
+ | 0.1541 | 578000 | 0.1313 |
885
+ | 0.1544 | 579000 | 0.1256 |
886
+ | 0.1547 | 580000 | 0.1257 |
887
+ | 0.1549 | 581000 | 0.1194 |
888
+ | 0.1552 | 582000 | 0.125 |
889
+ | 0.1555 | 583000 | 0.1345 |
890
+ | 0.1557 | 584000 | 0.1308 |
891
+ | 0.1560 | 585000 | 0.1318 |
892
+ | 0.1563 | 586000 | 0.1348 |
893
+ | 0.1565 | 587000 | 0.1231 |
894
+ | 0.1568 | 588000 | 0.1282 |
895
+ | 0.1571 | 589000 | 0.1281 |
896
+ | 0.1573 | 590000 | 0.1221 |
897
+ | 0.1576 | 591000 | 0.1234 |
898
+ | 0.1579 | 592000 | 0.1334 |
899
+ | 0.1581 | 593000 | 0.1249 |
900
+ | 0.1584 | 594000 | 0.1216 |
901
+ | 0.1587 | 595000 | 0.1295 |
902
+ | 0.1589 | 596000 | 0.1191 |
903
+ | 0.1592 | 597000 | 0.1267 |
904
+ | 0.1595 | 598000 | 0.1273 |
905
+ | 0.1597 | 599000 | 0.124 |
906
+ | 0.1600 | 600000 | 0.1271 |
907
+ | 0.1603 | 601000 | 0.1284 |
908
+ | 0.1605 | 602000 | 0.1285 |
909
+ | 0.1608 | 603000 | 0.1288 |
910
+ | 0.1611 | 604000 | 0.1252 |
911
+ | 0.1613 | 605000 | 0.1255 |
912
+ | 0.1616 | 606000 | 0.1289 |
913
+ | 0.1619 | 607000 | 0.1294 |
914
+ | 0.1621 | 608000 | 0.1294 |
915
+ | 0.1624 | 609000 | 0.1288 |
916
+ | 0.1627 | 610000 | 0.1336 |
917
+ | 0.1629 | 611000 | 0.125 |
918
+ | 0.1632 | 612000 | 0.1288 |
919
+ | 0.1635 | 613000 | 0.122 |
920
+ | 0.1637 | 614000 | 0.1204 |
921
+ | 0.1640 | 615000 | 0.1245 |
922
+ | 0.1643 | 616000 | 0.1303 |
923
+ | 0.1645 | 617000 | 0.1187 |
924
+ | 0.1648 | 618000 | 0.1223 |
925
+ | 0.1651 | 619000 | 0.1311 |
926
+ | 0.1653 | 620000 | 0.1202 |
927
+ | 0.1656 | 621000 | 0.1271 |
928
+ | 0.1659 | 622000 | 0.1218 |
929
+ | 0.1661 | 623000 | 0.1218 |
930
+ | 0.1664 | 624000 | 0.1247 |
931
+ | 0.1667 | 625000 | 0.1289 |
932
+ | 0.1669 | 626000 | 0.1261 |
933
+ | 0.1672 | 627000 | 0.1262 |
934
+ | 0.1675 | 628000 | 0.1251 |
935
+ | 0.1677 | 629000 | 0.1271 |
936
+ | 0.1680 | 630000 | 0.1243 |
937
+ | 0.1683 | 631000 | 0.1266 |
938
+ | 0.1685 | 632000 | 0.1257 |
939
+ | 0.1688 | 633000 | 0.1215 |
940
+ | 0.1691 | 634000 | 0.1236 |
941
+ | 0.1693 | 635000 | 0.1267 |
942
+ | 0.1696 | 636000 | 0.1209 |
943
+ | 0.1699 | 637000 | 0.1188 |
944
+ | 0.1701 | 638000 | 0.1267 |
945
+ | 0.1704 | 639000 | 0.1259 |
946
+ | 0.1707 | 640000 | 0.1225 |
947
+ | 0.1709 | 641000 | 0.1183 |
948
+ | 0.1712 | 642000 | 0.1202 |
949
+ | 0.1715 | 643000 | 0.1279 |
950
+ | 0.1717 | 644000 | 0.1191 |
951
+ | 0.1720 | 645000 | 0.1206 |
952
+ | 0.1723 | 646000 | 0.1178 |
953
+ | 0.1725 | 647000 | 0.1234 |
954
+ | 0.1728 | 648000 | 0.1259 |
955
+ | 0.1731 | 649000 | 0.1227 |
956
+ | 0.1733 | 650000 | 0.1211 |
957
+ | 0.1736 | 651000 | 0.1216 |
958
+ | 0.1739 | 652000 | 0.1182 |
959
+ | 0.1741 | 653000 | 0.1205 |
960
+ | 0.1744 | 654000 | 0.1187 |
961
+ | 0.1747 | 655000 | 0.1144 |
962
+ | 0.1749 | 656000 | 0.1216 |
963
+ | 0.1752 | 657000 | 0.1287 |
964
+ | 0.1755 | 658000 | 0.122 |
965
+ | 0.1757 | 659000 | 0.1213 |
966
+ | 0.1760 | 660000 | 0.1217 |
967
+ | 0.1763 | 661000 | 0.1256 |
968
+ | 0.1765 | 662000 | 0.1227 |
969
+ | 0.1768 | 663000 | 0.1219 |
970
+ | 0.1771 | 664000 | 0.1261 |
971
+ | 0.1773 | 665000 | 0.1169 |
972
+ | 0.1776 | 666000 | 0.1192 |
973
+ | 0.1779 | 667000 | 0.1187 |
974
+ | 0.1781 | 668000 | 0.1117 |
975
+ | 0.1784 | 669000 | 0.1189 |
976
+ | 0.1787 | 670000 | 0.12 |
977
+ | 0.1789 | 671000 | 0.1204 |
978
+ | 0.1792 | 672000 | 0.1208 |
979
+ | 0.1795 | 673000 | 0.119 |
980
+ | 0.1797 | 674000 | 0.1161 |
981
+ | 0.1800 | 675000 | 0.1167 |
982
+ | 0.1803 | 676000 | 0.1235 |
983
+ | 0.1805 | 677000 | 0.1276 |
984
+ | 0.1808 | 678000 | 0.1188 |
985
+ | 0.1811 | 679000 | 0.1135 |
986
+ | 0.1813 | 680000 | 0.1187 |
987
+ | 0.1816 | 681000 | 0.1165 |
988
+ | 0.1819 | 682000 | 0.1224 |
989
+ | 0.1821 | 683000 | 0.125 |
990
+ | 0.1824 | 684000 | 0.1146 |
991
+ | 0.1827 | 685000 | 0.1162 |
992
+ | 0.1829 | 686000 | 0.1172 |
993
+ | 0.1832 | 687000 | 0.1197 |
994
+ | 0.1835 | 688000 | 0.113 |
995
+ | 0.1837 | 689000 | 0.1216 |
996
+ | 0.1840 | 690000 | 0.1144 |
997
+ | 0.1843 | 691000 | 0.1274 |
998
+ | 0.1845 | 692000 | 0.1136 |
999
+ | 0.1848 | 693000 | 0.1202 |
1000
+ | 0.1851 | 694000 | 0.1249 |
1001
+ | 0.1853 | 695000 | 0.1195 |
1002
+ | 0.1856 | 696000 | 0.1158 |
1003
+ | 0.1859 | 697000 | 0.1145 |
1004
+ | 0.1861 | 698000 | 0.1187 |
1005
+ | 0.1864 | 699000 | 0.1173 |
1006
+ | 0.1867 | 700000 | 0.1181 |
1007
+ | 0.1869 | 701000 | 0.1236 |
1008
+ | 0.1872 | 702000 | 0.1223 |
1009
+ | 0.1875 | 703000 | 0.1147 |
1010
+ | 0.1877 | 704000 | 0.1197 |
1011
+ | 0.1880 | 705000 | 0.1125 |
1012
+ | 0.1883 | 706000 | 0.1175 |
1013
+ | 0.1885 | 707000 | 0.1239 |
1014
+ | 0.1888 | 708000 | 0.1263 |
1015
+ | 0.1891 | 709000 | 0.1229 |
1016
+ | 0.1893 | 710000 | 0.1202 |
1017
+ | 0.1896 | 711000 | 0.1159 |
1018
+ | 0.1899 | 712000 | 0.1232 |
1019
+ | 0.1901 | 713000 | 0.1197 |
1020
+ | 0.1904 | 714000 | 0.121 |
1021
+ | 0.1907 | 715000 | 0.1189 |
1022
+ | 0.1909 | 716000 | 0.1183 |
1023
+ | 0.1912 | 717000 | 0.1091 |
1024
+ | 0.1915 | 718000 | 0.1186 |
1025
+ | 0.1917 | 719000 | 0.115 |
1026
+ | 0.1920 | 720000 | 0.1146 |
1027
+ | 0.1923 | 721000 | 0.1165 |
1028
+ | 0.1925 | 722000 | 0.1192 |
1029
+ | 0.1928 | 723000 | 0.1163 |
1030
+ | 0.1931 | 724000 | 0.1162 |
1031
+ | 0.1933 | 725000 | 0.1156 |
1032
+ | 0.1936 | 726000 | 0.1218 |
1033
+ | 0.1939 | 727000 | 0.1154 |
1034
+ | 0.1941 | 728000 | 0.1131 |
1035
+ | 0.1944 | 729000 | 0.118 |
1036
+ | 0.1947 | 730000 | 0.1156 |
1037
+ | 0.1949 | 731000 | 0.1193 |
1038
+ | 0.1952 | 732000 | 0.1143 |
1039
+ | 0.1955 | 733000 | 0.1211 |
1040
+ | 0.1957 | 734000 | 0.1187 |
1041
+ | 0.1960 | 735000 | 0.12 |
1042
+ | 0.1963 | 736000 | 0.1164 |
1043
+ | 0.1965 | 737000 | 0.1173 |
1044
+ | 0.1968 | 738000 | 0.1151 |
1045
+ | 0.1971 | 739000 | 0.1143 |
1046
+ | 0.1973 | 740000 | 0.1141 |
1047
+ | 0.1976 | 741000 | 0.1174 |
1048
+ | 0.1979 | 742000 | 0.1185 |
1049
+ | 0.1981 | 743000 | 0.1133 |
1050
+ | 0.1984 | 744000 | 0.1174 |
1051
+ | 0.1987 | 745000 | 0.1154 |
1052
+ | 0.1989 | 746000 | 0.1138 |
1053
+ | 0.1992 | 747000 | 0.1203 |
1054
+ | 0.1995 | 748000 | 0.1119 |
1055
+ | 0.1997 | 749000 | 0.111 |
1056
+ | 0.2000 | 750000 | 0.1174 |
1057
+ | 0.2003 | 751000 | 0.1204 |
1058
+ | 0.2005 | 752000 | 0.1177 |
1059
+ | 0.2008 | 753000 | 0.1139 |
1060
+ | 0.2011 | 754000 | 0.1138 |
1061
+ | 0.2013 | 755000 | 0.1179 |
1062
+ | 0.2016 | 756000 | 0.1094 |
1063
+ | 0.2019 | 757000 | 0.1092 |
1064
+ | 0.2021 | 758000 | 0.1108 |
1065
+ | 0.2024 | 759000 | 0.1125 |
1066
+ | 0.2027 | 760000 | 0.1202 |
1067
+ | 0.2029 | 761000 | 0.1119 |
1068
+ | 0.2032 | 762000 | 0.1151 |
1069
+ | 0.2035 | 763000 | 0.1169 |
1070
+ | 0.2037 | 764000 | 0.1109 |
1071
+ | 0.2040 | 765000 | 0.1112 |
1072
+ | 0.2043 | 766000 | 0.1102 |
1073
+ | 0.2045 | 767000 | 0.119 |
1074
+ | 0.2048 | 768000 | 0.1131 |
1075
+ | 0.2051 | 769000 | 0.1155 |
1076
+ | 0.2053 | 770000 | 0.1133 |
1077
+ | 0.2056 | 771000 | 0.1127 |
1078
+ | 0.2059 | 772000 | 0.1116 |
1079
+ | 0.2061 | 773000 | 0.1122 |
1080
+ | 0.2064 | 774000 | 0.1151 |
1081
+ | 0.2067 | 775000 | 0.1163 |
1082
+ | 0.2069 | 776000 | 0.1162 |
1083
+ | 0.2072 | 777000 | 0.1096 |
1084
+ | 0.2075 | 778000 | 0.1151 |
1085
+ | 0.2077 | 779000 | 0.1156 |
1086
+ | 0.2080 | 780000 | 0.1135 |
1087
+ | 0.2083 | 781000 | 0.1084 |
1088
+ | 0.2085 | 782000 | 0.114 |
1089
+ | 0.2088 | 783000 | 0.1128 |
1090
+ | 0.2091 | 784000 | 0.1142 |
1091
+ | 0.2093 | 785000 | 0.1092 |
1092
+ | 0.2096 | 786000 | 0.1067 |
1093
+ | 0.2099 | 787000 | 0.1156 |
1094
+ | 0.2101 | 788000 | 0.1094 |
1095
+ | 0.2104 | 789000 | 0.1078 |
1096
+ | 0.2107 | 790000 | 0.1133 |
1097
+ | 0.2109 | 791000 | 0.1165 |
1098
+ | 0.2112 | 792000 | 0.1116 |
1099
+ | 0.2115 | 793000 | 0.1111 |
1100
+ | 0.2117 | 794000 | 0.1086 |
1101
+ | 0.2120 | 795000 | 0.1114 |
1102
+ | 0.2123 | 796000 | 0.1069 |
1103
+ | 0.2125 | 797000 | 0.1094 |
1104
+ | 0.2128 | 798000 | 0.1125 |
1105
+ | 0.2131 | 799000 | 0.112 |
1106
+ | 0.2133 | 800000 | 0.1107 |
1107
+ | 0.2136 | 801000 | 0.1085 |
1108
+ | 0.2139 | 802000 | 0.1067 |
1109
+ | 0.2141 | 803000 | 0.1149 |
1110
+ | 0.2144 | 804000 | 0.1068 |
1111
+ | 0.2147 | 805000 | 0.1124 |
1112
+ | 0.2149 | 806000 | 0.1109 |
1113
+ | 0.2152 | 807000 | 0.1094 |
1114
+ | 0.2155 | 808000 | 0.1097 |
1115
+ | 0.2157 | 809000 | 0.1106 |
1116
+ | 0.2160 | 810000 | 0.1152 |
1117
+ | 0.2163 | 811000 | 0.1123 |
1118
+ | 0.2165 | 812000 | 0.1102 |
1119
+ | 0.2168 | 813000 | 0.11 |
1120
+ | 0.2171 | 814000 | 0.1 |
1121
+ | 0.2173 | 815000 | 0.1127 |
1122
+ | 0.2176 | 816000 | 0.1135 |
1123
+ | 0.2179 | 817000 | 0.1127 |
1124
+ | 0.2181 | 818000 | 0.108 |
1125
+ | 0.2184 | 819000 | 0.1119 |
1126
+ | 0.2187 | 820000 | 0.1103 |
1127
+ | 0.2189 | 821000 | 0.1084 |
1128
+ | 0.2192 | 822000 | 0.1076 |
1129
+ | 0.2195 | 823000 | 0.1145 |
1130
+ | 0.2197 | 824000 | 0.109 |
1131
+ | 0.2200 | 825000 | 0.1119 |
1132
+ | 0.2203 | 826000 | 0.1117 |
1133
+ | 0.2205 | 827000 | 0.1117 |
1134
+ | 0.2208 | 828000 | 0.1062 |
1135
+ | 0.2211 | 829000 | 0.1113 |
1136
+ | 0.2213 | 830000 | 0.1101 |
1137
+ | 0.2216 | 831000 | 0.1053 |
1138
+ | 0.2219 | 832000 | 0.1122 |
1139
+ | 0.2221 | 833000 | 0.1091 |
1140
+ | 0.2224 | 834000 | 0.1106 |
1141
+ | 0.2227 | 835000 | 0.1062 |
1142
+ | 0.2229 | 836000 | 0.1091 |
1143
+ | 0.2232 | 837000 | 0.1144 |
1144
+ | 0.2235 | 838000 | 0.1106 |
1145
+ | 0.2237 | 839000 | 0.1058 |
1146
+ | 0.2240 | 840000 | 0.1085 |
1147
+ | 0.2243 | 841000 | 0.1154 |
1148
+ | 0.2245 | 842000 | 0.1096 |
1149
+ | 0.2248 | 843000 | 0.1062 |
1150
+ | 0.2251 | 844000 | 0.1089 |
1151
+ | 0.2253 | 845000 | 0.108 |
1152
+ | 0.2256 | 846000 | 0.1086 |
1153
+ | 0.2259 | 847000 | 0.1084 |
1154
+ | 0.2261 | 848000 | 0.1056 |
1155
+ | 0.2264 | 849000 | 0.1042 |
1156
+ | 0.2267 | 850000 | 0.1204 |
1157
+ | 0.2269 | 851000 | 0.1053 |
1158
+ | 0.2272 | 852000 | 0.1053 |
1159
+ | 0.2275 | 853000 | 0.1065 |
1160
+ | 0.2277 | 854000 | 0.1157 |
1161
+ | 0.2280 | 855000 | 0.1112 |
1162
+ | 0.2283 | 856000 | 0.1058 |
1163
+ | 0.2285 | 857000 | 0.1084 |
1164
+ | 0.2288 | 858000 | 0.1066 |
1165
+ | 0.2291 | 859000 | 0.1116 |
1166
+ | 0.2293 | 860000 | 0.1047 |
1167
+ | 0.2296 | 861000 | 0.1145 |
1168
+ | 0.2299 | 862000 | 0.1094 |
1169
+ | 0.2301 | 863000 | 0.1108 |
1170
+ | 0.2304 | 864000 | 0.1038 |
1171
+ | 0.2307 | 865000 | 0.1044 |
1172
+ | 0.2309 | 866000 | 0.106 |
1173
+ | 0.2312 | 867000 | 0.105 |
1174
+ | 0.2315 | 868000 | 0.108 |
1175
+ | 0.2317 | 869000 | 0.1108 |
1176
+ | 0.2320 | 870000 | 0.113 |
1177
+ | 0.2323 | 871000 | 0.108 |
1178
+ | 0.2325 | 872000 | 0.1069 |
1179
+ | 0.2328 | 873000 | 0.1098 |
1180
+ | 0.2331 | 874000 | 0.1021 |
1181
+ | 0.2333 | 875000 | 0.109 |
1182
+ | 0.2336 | 876000 | 0.1104 |
1183
+ | 0.2339 | 877000 | 0.1043 |
1184
+ | 0.2341 | 878000 | 0.1057 |
1185
+ | 0.2344 | 879000 | 0.105 |
1186
+ | 0.2347 | 880000 | 0.1042 |
1187
+ | 0.2349 | 881000 | 0.1116 |
1188
+ | 0.2352 | 882000 | 0.1151 |
1189
+ | 0.2355 | 883000 | 0.1043 |
1190
+ | 0.2357 | 884000 | 0.1023 |
1191
+ | 0.2360 | 885000 | 0.1084 |
1192
+ | 0.2363 | 886000 | 0.1103 |
1193
+ | 0.2365 | 887000 | 0.1028 |
1194
+ | 0.2368 | 888000 | 0.1055 |
1195
+ | 0.2371 | 889000 | 0.1023 |
1196
+ | 0.2373 | 890000 | 0.1099 |
1197
+ | 0.2376 | 891000 | 0.1037 |
1198
+ | 0.2379 | 892000 | 0.1068 |
1199
+ | 0.2381 | 893000 | 0.1128 |
1200
+ | 0.2384 | 894000 | 0.1023 |
1201
+ | 0.2387 | 895000 | 0.1023 |
1202
+ | 0.2389 | 896000 | 0.106 |
1203
+ | 0.2392 | 897000 | 0.1005 |
1204
+ | 0.2395 | 898000 | 0.1013 |
1205
+ | 0.2397 | 899000 | 0.1131 |
1206
+ | 0.2400 | 900000 | 0.107 |
1207
+ | 0.2403 | 901000 | 0.1096 |
1208
+ | 0.2405 | 902000 | 0.0963 |
1209
+ | 0.2408 | 903000 | 0.1076 |
1210
+ | 0.2411 | 904000 | 0.102 |
1211
+ | 0.2413 | 905000 | 0.1147 |
1212
+ | 0.2416 | 906000 | 0.1111 |
1213
+ | 0.2419 | 907000 | 0.1035 |
1214
+ | 0.2421 | 908000 | 0.1059 |
1215
+ | 0.2424 | 909000 | 0.1037 |
1216
+ | 0.2427 | 910000 | 0.1047 |
1217
+ | 0.2429 | 911000 | 0.1049 |
1218
+ | 0.2432 | 912000 | 0.1097 |
1219
+ | 0.2435 | 913000 | 0.1062 |
1220
+ | 0.2437 | 914000 | 0.1016 |
1221
+ | 0.2440 | 915000 | 0.1061 |
1222
+ | 0.2443 | 916000 | 0.1089 |
1223
+ | 0.2445 | 917000 | 0.1032 |
1224
+ | 0.2448 | 918000 | 0.1053 |
1225
+ | 0.2451 | 919000 | 0.1075 |
1226
+ | 0.2453 | 920000 | 0.1048 |
1227
+ | 0.2456 | 921000 | 0.1007 |
1228
+ | 0.2459 | 922000 | 0.11 |
1229
+ | 0.2461 | 923000 | 0.1034 |
1230
+ | 0.2464 | 924000 | 0.1059 |
1231
+ | 0.2467 | 925000 | 0.1063 |
1232
+ | 0.2469 | 926000 | 0.1051 |
1233
+ | 0.2472 | 927000 | 0.1064 |
1234
+ | 0.2475 | 928000 | 0.0986 |
1235
+ | 0.2477 | 929000 | 0.1037 |
1236
+ | 0.2480 | 930000 | 0.1093 |
1237
+ | 0.2483 | 931000 | 0.102 |
1238
+ | 0.2485 | 932000 | 0.0985 |
1239
+ | 0.2488 | 933000 | 0.1023 |
1240
+ | 0.2491 | 934000 | 0.104 |
1241
+ | 0.2493 | 935000 | 0.1108 |
1242
+ | 0.2496 | 936000 | 0.1061 |
1243
+ | 0.2499 | 937000 | 0.1053 |
1244
+
1245
+ </details>
1246
+
1247
+ ### Framework Versions
1248
+ - Python: 3.12.2
1249
+ - Sentence Transformers: 3.2.1
1250
+ - Transformers: 4.45.2
1251
+ - PyTorch: 2.5.0
1252
+ - Accelerate: 1.0.1
1253
+ - Datasets: 3.0.1
1254
+ - Tokenizers: 0.20.1
1255
+
1256
+ ## Citation
1257
+
1258
+ ### BibTeX
1259
+
1260
+ #### Sentence Transformers
1261
+ ```bibtex
1262
+ @inproceedings{reimers-2019-sentence-bert,
1263
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1264
+ author = "Reimers, Nils and Gurevych, Iryna",
1265
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1266
+ month = "11",
1267
+ year = "2019",
1268
+ publisher = "Association for Computational Linguistics",
1269
+ url = "https://arxiv.org/abs/1908.10084",
1270
+ }
1271
+ ```
1272
+
1273
+ #### CustomTripletLoss
1274
+ ```bibtex
1275
+ @misc{hermans2017defense,
1276
+ title={In Defense of the Triplet Loss for Person Re-Identification},
1277
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
1278
+ year={2017},
1279
+ eprint={1703.07737},
1280
+ archivePrefix={arXiv},
1281
+ primaryClass={cs.CV}
1282
+ }
1283
+ ```
1284
+
1285
+ <!--
1286
+ ## Glossary
1287
+
1288
+ *Clearly define terms in order to be accessible across audiences.*
1289
+ -->
1290
+
1291
+ <!--
1292
+ ## Model Card Authors
1293
+
1294
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1295
+ -->
1296
+
1297
+ <!--
1298
+ ## Model Card Contact
1299
+
1300
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1301
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "[TEXT]": 32768,
3
+ "[YEAR_RANGE]": 32769
4
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pankajrajdeo/UMLS-ED-Bioformer-16L-V-1.25",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 1024,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 6,
17
+ "num_hidden_layers": 16,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.47.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32770
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19904dfb5ac882107a74188ac0e1dc03fdbaa04c408cd92c497a13b2723bef3f
3
+ size 166100216
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "[TEXT]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "[YEAR_RANGE]",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "cls_token": {
19
+ "content": "[CLS]",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "mask_token": {
26
+ "content": "[MASK]",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "[PAD]",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "sep_token": {
40
+ "content": "[SEP]",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ },
46
+ "unk_token": {
47
+ "content": "[UNK]",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ }
53
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "32768": {
44
+ "content": "[TEXT]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "32769": {
52
+ "content": "[YEAR_RANGE]",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ }
59
+ },
60
+ "additional_special_tokens": [
61
+ "[TEXT]",
62
+ "[YEAR_RANGE]"
63
+ ],
64
+ "clean_up_tokenization_spaces": true,
65
+ "cls_token": "[CLS]",
66
+ "do_basic_tokenize": true,
67
+ "do_lower_case": false,
68
+ "extra_special_tokens": {},
69
+ "mask_token": "[MASK]",
70
+ "max_length": 1024,
71
+ "model_max_length": 1024,
72
+ "never_split": null,
73
+ "pad_to_multiple_of": null,
74
+ "pad_token": "[PAD]",
75
+ "pad_token_type_id": 0,
76
+ "padding_side": "right",
77
+ "sep_token": "[SEP]",
78
+ "stride": 0,
79
+ "strip_accents": null,
80
+ "tokenize_chinese_chars": true,
81
+ "tokenizer_class": "BertTokenizer",
82
+ "truncation_side": "right",
83
+ "truncation_strategy": "longest_first",
84
+ "unk_token": "[UNK]"
85
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff