--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: ace split: validation args: ace metrics: - name: Precision type: precision value: 0.20394736842105263 - name: Recall type: recall value: 0.2897196261682243 - name: F1 type: f1 value: 0.23938223938223938 - name: Accuracy type: accuracy value: 0.817741935483871 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6372 - Precision: 0.2039 - Recall: 0.2897 - F1: 0.2394 - Accuracy: 0.8177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.7383 | 0.1463 | 0.1121 | 0.1270 | 0.7737 | | No log | 2.0 | 26 | 0.6586 | 0.1618 | 0.2056 | 0.1811 | 0.8075 | | No log | 3.0 | 39 | 0.6372 | 0.2039 | 0.2897 | 0.2394 | 0.8177 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3