--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: ace split: validation args: ace metrics: - name: Precision type: precision value: 0.34523809523809523 - name: Recall type: recall value: 0.5420560747663551 - name: F1 type: f1 value: 0.4218181818181818 - name: Accuracy type: accuracy value: 0.8688172043010752 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.5677 - Precision: 0.3452 - Recall: 0.5421 - F1: 0.4218 - Accuracy: 0.8688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.5728 | 0.2077 | 0.3551 | 0.2621 | 0.8199 | | No log | 2.0 | 26 | 0.5687 | 0.2889 | 0.3645 | 0.3223 | 0.8312 | | No log | 3.0 | 39 | 0.5447 | 0.2857 | 0.4486 | 0.3491 | 0.8425 | | No log | 4.0 | 52 | 0.5509 | 0.2881 | 0.4766 | 0.3592 | 0.8489 | | No log | 5.0 | 65 | 0.5751 | 0.3121 | 0.4579 | 0.3712 | 0.8511 | | No log | 6.0 | 78 | 0.5358 | 0.3851 | 0.5794 | 0.4627 | 0.8667 | | No log | 7.0 | 91 | 0.5484 | 0.3491 | 0.5514 | 0.4275 | 0.8645 | | No log | 8.0 | 104 | 0.5671 | 0.3580 | 0.5421 | 0.4312 | 0.8672 | | No log | 9.0 | 117 | 0.5666 | 0.3494 | 0.5421 | 0.4249 | 0.8688 | | No log | 10.0 | 130 | 0.5677 | 0.3452 | 0.5421 | 0.4218 | 0.8688 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3