Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models
Abstract
Cutting-edge diffusion models produce images with high quality and customizability, enabling them to be used for commercial art and graphic design purposes. But do diffusion models create unique works of art, or are they replicating content directly from their training sets? In this work, we study image retrieval frameworks that enable us to compare generated images with training samples and detect when content has been replicated. Applying our frameworks to diffusion models trained on multiple datasets including Oxford flowers, Celeb-A, ImageNet, and LAION, we discuss how factors such as training set size impact rates of content replication. We also identify cases where diffusion models, including the popular Stable Diffusion model, blatantly copy from their training data.
Models citing this paper 17
Browse 17 models citing this paperDatasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 125
Collections including this paper 0
No Collection including this paper