Papers
arxiv:2407.21489

Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends

Published on Jul 31
Authors:
,

Abstract

Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks. However, the urge to attain superior results has, at times, led to the premature replacement of carefully designed task-specific approaches without exhaustive experimentation. The Coreference Resolution task is no exception; all recent state-of-the-art solutions adopt large generative autoregressive models that outperform encoder-based discriminative systems. In this work,we challenge this recent trend by introducing Maverick, a carefully designed - yet simple - pipeline, which enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget, outperforming models with up to 13 billion parameters with as few as 500 million parameters. Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems. We extensively validate the robustness of the Maverick framework with an array of diverse experiments, reporting improvements over prior systems in data-scarce, long-document, and out-of-domain settings. We release our code and models for research purposes at https://github.com/SapienzaNLP/maverick-coref.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2407.21489 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.21489 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.