- Corrected CBOW Performs as well as Skip-gram Mikolov et al. (2013a) observed that continuous bag-of-words (CBOW) word embeddings tend to underperform Skip-gram (SG) embeddings, and this finding has been reported in subsequent works. We find that these observations are driven not by fundamental differences in their training objectives, but more likely on faulty negative sampling CBOW implementations in popular libraries such as the official implementation, word2vec.c, and Gensim. We show that after correcting a bug in the CBOW gradient update, one can learn CBOW word embeddings that are fully competitive with SG on various intrinsic and extrinsic tasks, while being many times faster to train. 3 authors · Dec 30, 2020
- Musical Word Embedding: Bridging the Gap between Listening Contexts and Music Word embedding pioneered by Mikolov et al. is a staple technique for word representations in natural language processing (NLP) research which has also found popularity in music information retrieval tasks. Depending on the type of text data for word embedding, however, vocabulary size and the degree of musical pertinence can significantly vary. In this work, we (1) train the distributed representation of words using combinations of both general text data and music-specific data and (2) evaluate the system in terms of how they associate listening contexts with musical compositions. 4 authors · Jul 23, 2020
- CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia. 7 authors · Nov 1, 2019
- Skill2vec: Machine Learning Approach for Determining the Relevant Skills from Job Description Unsupervise learned word embeddings have seen tremendous success in numerous Natural Language Processing (NLP) tasks in recent years. The main contribution of this paper is to develop a technique called Skill2vec, which applies machine learning techniques in recruitment to enhance the search strategy to find candidates possessing the appropriate skills. Skill2vec is a neural network architecture inspired by Word2vec, developed by Mikolov et al. in 2013. It transforms skills to new vector space, which has the characteristics of calculation and presents skills relationships. We conducted an experiment evaluation manually by a recruitment company's domain experts to demonstrate the effectiveness of our approach. 3 authors · Jul 31, 2017
1 Dynamic Word Embeddings We present a probabilistic language model for time-stamped text data which tracks the semantic evolution of individual words over time. The model represents words and contexts by latent trajectories in an embedding space. At each moment in time, the embedding vectors are inferred from a probabilistic version of word2vec [Mikolov et al., 2013]. These embedding vectors are connected in time through a latent diffusion process. We describe two scalable variational inference algorithms--skip-gram smoothing and skip-gram filtering--that allow us to train the model jointly over all times; thus learning on all data while simultaneously allowing word and context vectors to drift. Experimental results on three different corpora demonstrate that our dynamic model infers word embedding trajectories that are more interpretable and lead to higher predictive likelihoods than competing methods that are based on static models trained separately on time slices. 2 authors · Feb 27, 2017
1 On the difficulty of training Recurrent Neural Networks There are two widely known issues with properly training Recurrent Neural Networks, the vanishing and the exploding gradient problems detailed in Bengio et al. (1994). In this paper we attempt to improve the understanding of the underlying issues by exploring these problems from an analytical, a geometric and a dynamical systems perspective. Our analysis is used to justify a simple yet effective solution. We propose a gradient norm clipping strategy to deal with exploding gradients and a soft constraint for the vanishing gradients problem. We validate empirically our hypothesis and proposed solutions in the experimental section. 3 authors · Nov 21, 2012