2 VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We propose VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework for real-time voice interaction. Departing from the conventional next-token prediction (NTP), we introduce multi-token prediction (MTP), a novel approach optimized for speech LLMs that simultaneously improves generation speed and quality. Experiments show that VocalNet outperforms mainstream Omni LLMs despite using significantly less training data, while also surpassing existing open-source speech LLMs by a substantial margin. To support reproducibility and community advancement, we will open-source all model weights, inference code, training data, and framework implementations upon publication. 7 authors · Apr 5
8 MooER: LLM-based Speech Recognition and Translation Models from Moore Threads In this paper, we present MooER, a LLM-based large-scale automatic speech recognition (ASR) / automatic speech translation (AST) model of Moore Threads. A 5000h pseudo labeled dataset containing open source and self collected speech data is used for training. We achieve performance comparable to other open source models trained with up to hundreds of thousands of hours of labeled speech data. Meanwhile, experiments conducted on Covost2 Zh2en testset suggest that our model outperforms other open source Speech LLMs. A BLEU score of 25.2 can be obtained. The main contributions of this paper are summarized as follows. First, this paper presents a training strategy for encoders and LLMs on speech related tasks (including ASR and AST) using a small size of pseudo labeled data without any extra manual annotation and selection. Second, we release our ASR and AST models and plan to open-source our training code and strategy in the near future. Moreover, a model trained on 8wh scale training data is planned to be released later on. 8 authors · Aug 9, 2024 2
- TESU-LLM: Training Speech-LLMs Without Speech via Unified Encoder Alignment Recent advances in speech-enabled language models have shown promising results in building intelligent voice assistants. However, most existing approaches rely on large-scale paired speech-text data and extensive computational resources, which pose challenges in terms of scalability and accessibility. In this paper, we present TESU-LLM, a novel framework that enables training speech-capable language models using only text data. Our key insight is to leverage a unified encoder that maps semantically equivalent text and speech inputs to a shared latent space. By aligning the encoder output with the embedding space of a LLM via a lightweight projection network, we enable the model to generalize from text-only supervision to speech-based inference. Despite being trained exclusively on text, TESU-LLM achieves strong performance on various speech-related benchmarks, comparable to baseline methods trained with large-scale multimodal datasets and substantial computational resources. These results highlight the effectiveness and efficiency of our approach, offering a scalable path toward building speech LLMs without speech data. 2 authors · Jun 1
- Contextual Paralinguistic Data Creation for Multi-Modal Speech-LLM: Data Condensation and Spoken QA Generation Current speech-LLMs exhibit limited capability in contextual reasoning alongside paralinguistic understanding, primarily due to the lack of Question-Answer (QA) datasets that cover both aspects. We propose a novel framework for dataset generation from in-the-wild speech data, that integrates contextual reasoning with paralinguistic information. It consists of a pseudo paralinguistic label-based data condensation of in-the-wild speech and LLM-based Contextual Paralinguistic QA (CPQA) generation. The effectiveness is validated by a strong correlation in evaluations of the Qwen2-Audio-7B-Instruct model on a dataset created by our framework and human-generated CPQA dataset. The results also reveal the speech-LLM's limitations in handling empathetic reasoning tasks, highlighting the need for such datasets and more robust models. The proposed framework is first of its kind and has potential in training more robust speech-LLMs with paralinguistic reasoning capabilities. 4 authors · May 19
- Granite-speech: open-source speech-aware LLMs with strong English ASR capabilities Granite-speech LLMs are compact and efficient speech language models specifically designed for English ASR and automatic speech translation (AST). The models were trained by modality aligning the 2B and 8B parameter variants of granite-3.3-instruct to speech on publicly available open-source corpora containing audio inputs and text targets consisting of either human transcripts for ASR or automatically generated translations for AST. Comprehensive benchmarking shows that on English ASR, which was our primary focus, they outperform several competitors' models that were trained on orders of magnitude more proprietary data, and they keep pace on English-to-X AST for major European languages, Japanese, and Chinese. The speech-specific components are: a conformer acoustic encoder using block attention and self-conditioning trained with connectionist temporal classification, a windowed query-transformer speech modality adapter used to do temporal downsampling of the acoustic embeddings and map them to the LLM text embedding space, and LoRA adapters to further fine-tune the text LLM. Granite-speech-3.3 operates in two modes: in speech mode, it performs ASR and AST by activating the encoder, projector, and LoRA adapters; in text mode, it calls the underlying granite-3.3-instruct model directly (without LoRA), essentially preserving all the text LLM capabilities and safety. Both models are freely available on HuggingFace (https://huggingface.co/ibm-granite/granite-speech-3.3-2b and https://huggingface.co/ibm-granite/granite-speech-3.3-8b) and can be used for both research and commercial purposes under a permissive Apache 2.0 license. 24 authors · May 13
- Balancing Speech Understanding and Generation Using Continual Pre-training for Codec-based Speech LLM Recent efforts have extended textual LLMs to the speech domain. Yet, a key challenge remains, which is balancing speech understanding and generation while avoiding catastrophic forgetting when integrating acoustically rich codec-based representations into models originally trained on text. In this work, we propose a novel approach that leverages continual pre-training (CPT) on a pre-trained textual LLM to create a codec-based speech language model. This strategy mitigates the modality gap between text and speech, preserving the linguistic reasoning of the original model while enabling high-fidelity speech synthesis. We validate our approach with extensive experiments across multiple tasks, including automatic speech recognition, text-to-speech, speech-to-text translation, and speech-to-speech translation (S2ST), demonstrating that our model achieves superior TTS performance and, notably, the first end-to-end S2ST system based on neural codecs. 7 authors · Feb 24
- MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens Audio-Visual Speech Recognition (AVSR) achieves robust speech recognition in noisy environments by combining auditory and visual information. However, recent Large Language Model (LLM) based AVSR systems incur high computational costs due to the high temporal resolution of audio-visual speech processed by LLMs. In this work, we introduce an efficient multimodal speech LLM framework that minimizes token length while preserving essential linguistic content. Our approach employs an early av-fusion module for streamlined feature integration, an audio-visual speech Q-Former that dynamically allocates tokens based on input duration, and a refined query allocation strategy with a speech rate predictor to adjust token allocation according to speaking speed of each audio sample. Extensive experiments on the LRS3 dataset show that our method achieves state-of-the-art performance with a WER of 0.74% while using only 3.5 tokens per second. Moreover, our approach not only reduces token usage by 86% compared to the previous multimodal speech LLM framework, but also improves computational efficiency by reducing FLOPs by 35.7%. 4 authors · Mar 14
- Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models. 8 authors · Sep 18, 2024
1 WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation. 6 authors · Jun 26
- NanoCodec: Towards High-Quality Ultra Fast Speech LLM Inference Large Language Models (LLMs) have significantly advanced audio processing by leveraging audio codecs to discretize audio into tokens, enabling the application of language modeling techniques to speech data. However, existing audio codecs often operate at high frame rates, leading to slow training and inference, particularly for autoregressive models. To address this, there is growing interest in low frame-rate audio codecs, which reduce the number of autoregressive steps required to generate one second of audio. In this paper, we conduct ablation studies to examine the impact of frame rate, bitrate, and causality on codec reconstruction quality. Based on our findings, we introduce NanoCodec, a state-of-the-art audio codec that achieves high-quality compression at just 12.5 frames per second (FPS). NanoCodec outperforms related works across various bitrate ranges, establishing a new benchmark for low-latency and efficient Speech LLM training and inference. 9 authors · Aug 7
57 EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX. 7 authors · Sep 11 3
1 SpeechDialogueFactory: Generating High-Quality Speech Dialogue Data to Accelerate Your Speech-LLM Development High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce SpeechDialogueFactory, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development. 6 authors · Mar 31
1 Enhancing Non-Core Language Instruction-Following in Speech LLMs via Semi-Implicit Cross-Lingual CoT Reasoning Large language models have been extended to the speech domain, leading to the development of speech large language models (SLLMs). While existing SLLMs demonstrate strong performance in speech instruction-following for core languages (e.g., English), they often struggle with non-core languages due to the scarcity of paired speech-text data and limited multilingual semantic reasoning capabilities. To address this, we propose the semi-implicit Cross-lingual Speech Chain-of-Thought (XS-CoT) framework, which integrates speech-to-text translation into the reasoning process of SLLMs. The XS-CoT generates four types of tokens: instruction and response tokens in both core and non-core languages, enabling cross-lingual transfer of reasoning capabilities. To mitigate inference latency in generating target non-core response tokens, we incorporate a semi-implicit CoT scheme into XS-CoT, which progressively compresses the first three types of intermediate reasoning tokens while retaining global reasoning logic during training. By leveraging the robust reasoning capabilities of the core language, XS-CoT improves responses for non-core languages by up to 45\% in GPT-4 score when compared to direct supervised fine-tuning on two representative SLLMs, Qwen2-Audio and SALMONN. Moreover, the semi-implicit XS-CoT reduces token delay by more than 50\% with a slight drop in GPT-4 scores. Importantly, XS-CoT requires only a small amount of high-quality training data for non-core languages by leveraging the reasoning capabilities of core languages. To support training, we also develop a data pipeline and open-source speech instruction-following datasets in Japanese, German, and French. 6 authors · Apr 29
- CS3-Bench: Evaluating and Enhancing Speech-to-Speech LLMs for Mandarin-English Code-Switching The advancement of multimodal large language models has accelerated the development of speech-to-speech interaction systems. While natural monolingual interaction has been achieved, we find existing models exhibit deficiencies in language alignment. In our proposed Code-Switching Speech-to-Speech Benchmark (CS3-Bench), experiments on 7 mainstream models demonstrate a relative performance drop of up to 66% in knowledge-intensive question answering and varying degrees of misunderstanding in open-ended conversations. Starting from a model with severe performance deterioration, we propose both data constructions and training approaches to improve the language alignment capabilities, specifically employing Chain of Recognition (CoR) to enhance understanding and Keyword Highlighting (KH) to guide generation. Our approach improves the knowledge accuracy from 25.14% to 46.13%, with open-ended understanding rate from 64.5% to 86.5%, and significantly reduces pronunciation errors in the secondary language. CS3-Bench is available at https://huggingface.co/datasets/VocalNet/CS3-Bench. 7 authors · Oct 9
34 Roadmap towards Superhuman Speech Understanding using Large Language Models The success of large language models (LLMs) has prompted efforts to integrate speech and audio data, aiming to create general foundation models capable of processing both textual and non-textual inputs. Recent advances, such as GPT-4o, highlight the potential for end-to-end speech LLMs, which preserves non-semantic information and world knowledge for deeper speech understanding. To guide the development of speech LLMs, we propose a five-level roadmap, ranging from basic automatic speech recognition (ASR) to advanced superhuman models capable of integrating non-semantic information with abstract acoustic knowledge for complex tasks. Moreover, we design a benchmark, SAGI Bechmark, that standardizes critical aspects across various tasks in these five levels, uncovering challenges in using abstract acoustic knowledge and completeness of capability. Our findings reveal gaps in handling paralinguistic cues and abstract acoustic knowledge, and we offer future directions. This paper outlines a roadmap for advancing speech LLMs, introduces a benchmark for evaluation, and provides key insights into their current limitations and potential. 6 authors · Oct 17, 2024 2
11 WavLLM: Towards Robust and Adaptive Speech Large Language Model The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at aka.ms/wavllm. 11 authors · Mar 31, 2024 1
- Summary on The Multilingual Conversational Speech Language Model Challenge: Datasets, Tasks, Baselines, and Methods This paper summarizes the Interspeech2025 Multilingual Conversational Speech Language Model (MLC-SLM) challenge, which aims to advance the exploration of building effective multilingual conversational speech LLMs (SLLMs). We provide a detailed description of the task settings for the MLC-SLM challenge, the released real-world multilingual conversational speech dataset totaling approximately 1,604 hours, and the baseline systems for participants. The MLC-SLM challenge attracts 78 teams from 13 countries to participate, with 489 valid leaderboard results and 14 technical reports for the two tasks. We distill valuable insights on building multilingual conversational SLLMs based on submissions from participants, aiming to contribute to the advancement of the community. 11 authors · Sep 17
1 Vision-Speech Models: Teaching Speech Models to Converse about Images The recent successes of Vision-Language models raise the question of how to equivalently imbue a pretrained speech model with vision understanding, an important milestone towards building a multimodal speech model able to freely converse about images. Building such a conversational Vision-Speech model brings its unique challenges: (i) paired image-speech datasets are much scarcer than their image-text counterparts, (ii) ensuring real-time latency at inference is crucial thus bringing compute and memory constraints, and (iii) the model should preserve prosodic features (e.g., speaker tone) which cannot be inferred from text alone. In this work, we introduce MoshiVis, augmenting a recent dialogue speech LLM, Moshi, with visual inputs through lightweight adaptation modules. An additional dynamic gating mechanism enables the model to more easily switch between the visual inputs and unrelated conversation topics. To reduce training costs, we design a simple one-stage, parameter-efficient fine-tuning pipeline in which we leverage a mixture of image-text (i.e., "speechless") and image-speech samples. We evaluate the model on downstream visual understanding tasks with both audio and text prompts, and report qualitative samples of interactions with MoshiVis. Our inference code will be made available, as well as the image-speech data used for audio evaluation. 7 authors · Mar 19
- DualSpeechLM: Towards Unified Speech Understanding and Generation via Dual Speech Token Modeling with Large Language Models Extending pre-trained Large Language Models (LLMs)'s speech understanding or generation abilities by introducing various effective speech tokens has attracted great attention in the speech community. However, building a unified speech understanding and generation model still faces the following challenges: (1) Due to the huge modality gap between speech tokens and text tokens, extending text LLMs to unified speech LLMs relies on large-scale paired data for fine-tuning, and (2) Generation and understanding tasks prefer information at different levels, e.g., generation benefits from detailed acoustic features, while understanding favors high-level semantics. This divergence leads to difficult performance optimization in one unified model. To solve these challenges, in this paper, we present two key insights in speech tokenization and speech language modeling. Specifically, we first propose an Understanding-driven Speech Tokenizer (USTokenizer), which extracts high-level semantic information essential for accomplishing understanding tasks using text LLMs. In this way, USToken enjoys better modality commonality with text, which reduces the difficulty of modality alignment in adapting text LLMs to speech LLMs. Secondly, we present DualSpeechLM, a dual-token modeling framework that concurrently models USToken as input and acoustic token as output within a unified, end-to-end framework, seamlessly integrating speech understanding and generation capabilities. Furthermore, we propose a novel semantic supervision loss and a Chain-of-Condition (CoC) strategy to stabilize model training and enhance speech generation performance. Experimental results demonstrate that our proposed approach effectively fosters a complementary relationship between understanding and generation tasks, highlighting the promising strategy of mutually enhancing both tasks in one unified model. 8 authors · Aug 12
- Towards Spoken Mathematical Reasoning: Benchmarking Speech-based Models over Multi-faceted Math Problems Recent advances in large language models (LLMs) and multimodal LLMs (MLLMs) have led to strong reasoning ability across a wide range of tasks. However, their ability to perform mathematical reasoning from spoken input remains underexplored. Prior studies on speech modality have mostly focused on factual speech understanding or simple audio reasoning tasks, providing limited insight into logical step-by-step reasoning, such as that required for mathematical problem solving. To address this gap, we introduce Spoken Math Question Answering (Spoken-MQA), a new benchmark designed to evaluate the mathematical reasoning capabilities of speech-based models, including both cascade models (ASR + LLMs) and end-to-end speech LLMs. Spoken-MQA covers a diverse set of math problems, including pure arithmetic, single-step and multi-step contextual reasoning, and knowledge-oriented reasoning problems, all presented in unambiguous natural spoken language. Through extensive experiments, we find that: (1) while some speech LLMs perform competitively on contextual reasoning tasks involving basic arithmetic, they still struggle with direct arithmetic problems; (2) current LLMs exhibit a strong bias toward symbolic mathematical expressions written in LaTex and have difficulty interpreting verbalized mathematical expressions; and (3) mathematical knowledge reasoning abilities are significantly degraded in current speech LLMs. 4 authors · May 20
- SageLM: A Multi-aspect and Explainable Large Language Model for Speech Judgement Speech-to-Speech (S2S) Large Language Models (LLMs) are foundational to natural human-computer interaction, enabling end-to-end spoken dialogue systems. However, evaluating these models remains a fundamental challenge. We propose SageLM, an end-to-end, multi-aspect, and explainable speech LLM for comprehensive S2S LLMs evaluation. First, unlike cascaded approaches that disregard acoustic features, SageLM jointly assesses both semantic and acoustic dimensions. Second, it leverages rationale-based supervision to enhance explainability and guide model learning, achieving superior alignment with evaluation outcomes compared to rule-based reinforcement learning methods. Third, we introduce SpeechFeedback, a synthetic preference dataset, and employ a two-stage training paradigm to mitigate the scarcity of speech preference data. Trained on both semantic and acoustic dimensions, SageLM achieves an 82.79\% agreement rate with human evaluators, outperforming cascaded and SLM-based baselines by at least 7.42\% and 26.20\%, respectively. 13 authors · Aug 28
1 S2SBench: A Benchmark for Quantifying Intelligence Degradation in Speech-to-Speech Large Language Models End-to-end speech large language models ((LLMs)) extend the capabilities of text-based models to directly process and generate audio tokens. However, this often leads to a decline in reasoning and generation performance compared to text input, a phenomenon referred to as intelligence degradation. To systematically evaluate this gap, we propose S2SBench, a benchmark designed to quantify performance degradation in Speech LLMs. It includes diagnostic datasets targeting sentence continuation and commonsense reasoning under audio input. We further introduce a pairwise evaluation protocol based on perplexity differences between plausible and implausible samples to measure degradation relative to text input. We apply S2SBench to analyze the training process of Baichuan-Audio, which further demonstrates the benchmark's effectiveness. All datasets and evaluation code are available at https://github.com/undobug/S2SBench. 8 authors · May 20
- EMMeTT: Efficient Multimodal Machine Translation Training A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B's speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time. 10 authors · Sep 20, 2024
23 Distilling an End-to-End Voice Assistant Without Instruction Training Data Voice assistants, such as Siri and Google Assistant, typically model audio and text separately, resulting in lost speech information and increased complexity. Recent efforts to address this with end-to-end Speech Large Language Models (LLMs) trained with supervised finetuning (SFT) have led to models ``forgetting" capabilities from text-only LLMs. Our work proposes an alternative paradigm for training Speech LLMs without instruction data, using the response of a text-only LLM to transcripts as self-supervision. Importantly, this process can be performed without annotated responses. We show that our Distilled Voice Assistant (DiVA) generalizes to Spoken Question Answering, Classification, and Translation. Furthermore, we show that DiVA better meets user preferences, achieving a 72\% win rate compared with state-of-the-art models like Qwen 2 Audio, despite using >100x less training compute. 6 authors · Oct 3, 2024 5
- Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that "even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different". Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods. 3 authors · Feb 20, 2024
72 LLMVoX: Autoregressive Streaming Text-to-Speech Model for Any LLM Recent advancements in speech-to-speech dialogue systems leverage LLMs for multimodal interactions, yet they remain hindered by fine-tuning requirements, high computational overhead, and text-speech misalignment. Existing speech-enabled LLMs often degrade conversational quality by modifying the LLM, thereby compromising its linguistic capabilities. In contrast, we propose LLMVoX, a lightweight 30M-parameter, LLM-agnostic, autoregressive streaming TTS system that generates high-quality speech with low latency, while fully preserving the capabilities of the base LLM. Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency and UTMOS score. By decoupling speech synthesis from LLM processing via a multi-queue token streaming system, LLMVoX supports seamless, infinite-length dialogues. Its plug-and-play design also facilitates extension to various tasks with different backbones. Furthermore, LLMVoX generalizes to new languages with only dataset adaptation, attaining a low Character Error Rate on an Arabic speech task. Additionally, we have integrated LLMVoX with a Vision-Language Model to create an omni-model with speech, text, and vision capabilities, without requiring additional multimodal training. Our code base and project page is available at https://mbzuai-oryx.github.io/LLMVoX . 8 authors · Mar 6 5
9 Rambler: Supporting Writing With Speech via LLM-Assisted Gist Manipulation Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneous spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies. 11 authors · Jan 19, 2024 2
- FLEXI: Benchmarking Full-duplex Human-LLM Speech Interaction Full-Duplex Speech-to-Speech Large Language Models (LLMs) are foundational to natural human-computer interaction, enabling real-time spoken dialogue systems. However, benchmarking and modeling these models remains a fundamental challenge. We introduce FLEXI, the first benchmark for full-duplex LLM-human spoken interaction that explicitly incorporates model interruption in emergency scenarios. FLEXI systematically evaluates the latency, quality, and conversational effectiveness of real-time dialogue through six diverse human-LLM interaction scenarios, revealing significant gaps between open source and commercial models in emergency awareness, turn terminating, and interaction latency. Finally, we suggest that next token-pair prediction offers a promising path toward achieving truly seamless and human-like full-duplex interaction. 8 authors · Sep 26
- Solla: Towards a Speech-Oriented LLM That Hears Acoustic Context Large Language Models (LLMs) have recently shown remarkable ability to process not only text but also multimodal inputs such as speech and audio. However, most existing models primarily focus on analyzing input signals using text instructions, overlooking scenarios in which speech instructions and audio are mixed and serve as inputs to the model. To address these challenges, we introduce Solla, a novel framework designed to understand speech-based questions and hear the acoustic context concurrently. Solla incorporates an audio tagging module to effectively identify and represent audio events, as well as an ASR-assisted prediction method to improve comprehension of spoken content. To rigorously evaluate Solla and other publicly available models, we propose a new benchmark dataset called SA-Eval, which includes three tasks: audio event classification, audio captioning, and audio question answering. SA-Eval has diverse speech instruction with various speaking styles, encompassing two difficulty levels, easy and hard, to capture the range of real-world acoustic conditions. Experimental results show that Solla performs on par with or outperforms baseline models on both the easy and hard test sets, underscoring its effectiveness in jointly understanding speech and audio. 9 authors · Mar 19
1 PSLM: Parallel Generation of Text and Speech with LLMs for Low-Latency Spoken Dialogue Systems Multimodal language models that process both text and speech have a potential for applications in spoken dialogue systems. However, current models face two major challenges in response generation latency: (1) generating a spoken response requires the prior generation of a written response, and (2) speech sequences are significantly longer than text sequences. This study addresses these issues by extending the input and output sequences of the language model to support the parallel generation of text and speech. Our experiments on spoken question answering tasks demonstrate that our approach improves latency while maintaining the quality of response content. Additionally, we show that latency can be further reduced by generating speech in multiple sequences. Demo samples are available at https://rinnakk.github.io/research/publications/PSLM. 5 authors · Jun 18, 2024
7 Unified Speech-Text Pretraining for Spoken Dialog Modeling While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io. 10 authors · Feb 8, 2024
- Speech Recognition Rescoring with Large Speech-Text Foundation Models Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data. Automatic speech recognition (ASR) systems are often limited by available transcribed speech data and benefit from a second pass rescoring using LLM. Recently multi-modal large language models, particularly speech and text foundational models have demonstrated strong spoken language understanding. Speech-Text foundational models leverage large amounts of unlabelled and labelled data both in speech and text modalities to model human language. In this work, we propose novel techniques to use multi-modal LLM for ASR rescoring. We also explore discriminative training to further improve the foundational model rescoring performance. We demonstrate cross-modal knowledge transfer in speech-text LLM can benefit rescoring. Our experiments demonstrate up-to 20% relative improvements over Whisper large ASR and up-to 15% relative improvements over text-only LLM. 7 authors · Sep 25, 2024
- SECodec: Structural Entropy-based Compressive Speech Representation Codec for Speech Language Models With the rapid advancement of large language models (LLMs), discrete speech representations have become crucial for integrating speech into LLMs. Existing methods for speech representation discretization rely on a predefined codebook size and Euclidean distance-based quantization. However, 1) the size of codebook is a critical parameter that affects both codec performance and downstream task training efficiency. 2) The Euclidean distance-based quantization may lead to audio distortion when the size of the codebook is controlled within a reasonable range. In fact, in the field of information compression, structural information and entropy guidance are crucial, but previous methods have largely overlooked these factors. Therefore, we address the above issues from an information-theoretic perspective, we present SECodec, a novel speech representation codec based on structural entropy (SE) for building speech language models. Specifically, we first model speech as a graph, clustering the speech features nodes within the graph and extracting the corresponding codebook by hierarchically and disentangledly minimizing 2D SE. Then, to address the issue of audio distortion, we propose a new quantization method. This method still adheres to the 2D SE minimization principle, adaptively selecting the most suitable token corresponding to the cluster for each incoming original speech node. Furthermore, we develop a Structural Entropy-based Speech Language Model (SESLM) that leverages SECodec. Experimental results demonstrate that SECodec performs comparably to EnCodec in speech reconstruction, and SESLM surpasses VALL-E in zero-shot text-to-speech tasks. Code, demo speeches, speech feature graph, SE codebook, and models are available at https://github.com/wlq2019/SECodec. 8 authors · Dec 15, 2024
8 Towards General-Purpose Speech Abilities for Large Language Models Using Unpaired Data In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data. The proposed model can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform speech question answering, speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. Experiments show that our end-to-end approach is on par with or outperforms a cascaded system (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike a cascade, our approach shows the ability to interchange text and audio modalities and utilize the prior context in a conversation to provide better results. 9 authors · Nov 12, 2023
16 SIFT-50M: A Large-Scale Multilingual Dataset for Speech Instruction Fine-Tuning We introduce SIFT (Speech Instruction Fine-Tuning), a 50M-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). SIFT-50M is built from publicly available speech corpora, which collectively contain 14K hours of speech, and leverages LLMs along with off-the-shelf expert models. The dataset spans five languages, encompassing a diverse range of speech understanding as well as controllable speech generation instructions. Using SIFT-50M, we train SIFT-LLM, which outperforms existing speech-text LLMs on instruction-following benchmarks while achieving competitive performance on foundational speech tasks. To support further research, we also introduce EvalSIFT, a benchmark dataset specifically designed to evaluate the instruction-following capabilities of speech-text LLMs. 7 authors · Apr 12 2
- RealTalk-CN: A Realistic Chinese Speech-Text Dialogue Benchmark With Cross-Modal Interaction Analysis In recent years, large language models (LLMs) have achieved remarkable advancements in multimodal processing, including end-to-end speech-based language models that enable natural interactions and perform specific tasks in task-oriented dialogue (TOD) systems. However, existing TOD datasets are predominantly text-based, lacking real speech signals that are essential for evaluating the robustness of speech-based LLMs. Moreover, existing speech TOD datasets are primarily English and lack critical aspects such as speech disfluencies and speaker variations. To address these gaps, we introduce RealTalk-CN, the first Chinese multi-turn, multi-domain speech-text dual-modal TOD dataset, comprising 5.4k dialogues (60K utterances, 150 hours) with paired speech-text annotations. RealTalk-CN captures diverse dialogue scenarios with annotated spontaneous speech disfluencies, ensuring comprehensive coverage of real-world complexities in speech dialogue. In addition, we propose a novel cross-modal chat task that authentically simulates real-world user interactions, allowing dynamic switching between speech and text modalities. Our evaluation covers robustness to speech disfluencies, sensitivity to speaker characteristics, and cross-domain performance. Extensive experiments validate the effectiveness of RealTalk-CN, establishing a strong foundation for Chinese speech-based LLMs research. 9 authors · Aug 6
- Get Large Language Models Ready to Speak: A Late-fusion Approach for Speech Generation Large language models (LLMs) have revolutionized natural language processing (NLP) with impressive performance across various text-based tasks. However, the extension of text-dominant LLMs to with speech generation tasks remains under-explored. In this work, we introduce a text-to-speech (TTS) system powered by a fine-tuned Llama model, named TTS-Llama, that achieves state-of-the-art speech synthesis performance. Building on TTS-Llama, we further propose MoLE-Llama, a text-and-speech multimodal LLM developed through purely late-fusion parameter-efficient fine-tuning (PEFT) and a mixture-of-expert architecture. Extensive empirical results demonstrate MoLE-Llama's competitive performance on both text-only question-answering (QA) and TTS tasks, mitigating catastrophic forgetting issue in either modality. Finally, we further explore MoLE-Llama in text-in-speech-out QA tasks, demonstrating its great potential as a multimodal dialog system capable of speech generation. 8 authors · Oct 27, 2024
- LibriSQA: Advancing Free-form and Open-ended Spoken Question Answering with a Novel Dataset and Framework While Large Language Models (LLMs) have demonstrated commendable performance across a myriad of domains and tasks, existing LLMs still exhibit a palpable deficit in handling multimodal functionalities, especially for the Spoken Question Answering (SQA) task which necessitates precise alignment and deep interaction between speech and text features. To address the SQA challenge on LLMs, we initially curated the free-form and open-ended LibriSQA dataset from Librispeech, comprising Part I with natural conversational formats and Part II encompassing multiple-choice questions followed by answers and analytical segments. Both parts collectively include 107k SQA pairs that cover various topics. Given the evident paucity of existing speech-text LLMs, we propose a lightweight, end-to-end framework to execute the SQA task on the LibriSQA, witnessing significant results. By reforming ASR into the SQA format, we further substantiate our framework's capability in handling ASR tasks. Our empirical findings bolster the LLMs' aptitude for aligning and comprehending multimodal information, paving the way for the development of universal multimodal LLMs. The dataset and demo can be found at https://github.com/ZihanZhaoSJTU/LibriSQA. 5 authors · Aug 20, 2023
6 PodAgent: A Comprehensive Framework for Podcast Generation Existing Existing automatic audio generation methods struggle to generate podcast-like audio programs effectively. The key challenges lie in in-depth content generation, appropriate and expressive voice production. This paper proposed PodAgent, a comprehensive framework for creating audio programs. PodAgent 1) generates informative topic-discussion content by designing a Host-Guest-Writer multi-agent collaboration system, 2) builds a voice pool for suitable voice-role matching and 3) utilizes LLM-enhanced speech synthesis method to generate expressive conversational speech. Given the absence of standardized evaluation criteria for podcast-like audio generation, we developed comprehensive assessment guidelines to effectively evaluate the model's performance. Experimental results demonstrate PodAgent's effectiveness, significantly surpassing direct GPT-4 generation in topic-discussion dialogue content, achieving an 87.4% voice-matching accuracy, and producing more expressive speech through LLM-guided synthesis. Demo page: https://podcast-agent.github.io/demo/. Source code: https://github.com/yujxx/PodAgent. 5 authors · Mar 1 2
6 ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of 56% in English translation over the state-of-the-art and 9.3% in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: http://github.com/ahmedheakl/arazn-llm}, Models: http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e. 5 authors · Jun 26, 2024 5
- CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought Speech Language Models (SLMs) have demonstrated impressive performance on speech translation tasks. However, existing research primarily focuses on direct instruction fine-tuning and often overlooks the inherent reasoning capabilities of SLMs. In this paper, we introduce a three-stage training framework designed to activate the chain-of-thought (CoT) capabilities of SLMs. We propose CoT-ST, a speech translation model that utilizes multimodal CoT to decompose speech translation into sequential steps of speech recognition and translation. We validated the effectiveness of our method on two datasets: the CoVoST-2 dataset and MuST-C dataset. The experimental results demonstrate that CoT-ST outperforms previous state-of-the-art methods, achieving higher BLEU scores (CoVoST-2 en-ja: 30.5->30.8, en-zh: 45.2->47.7, MuST-C en-zh: 19.6->21.2). This work is open sourced at https://github.com/X-LANCE/SLAM-LLM/tree/main/examples/st_covost2 . 9 authors · Sep 28, 2024
- Continuous Speech Tokens Makes LLMs Robust Multi-Modality Learners Recent advances in GPT-4o like multi-modality models have demonstrated remarkable progress for direct speech-to-speech conversation, with real-time speech interaction experience and strong speech understanding ability. However, current research focuses on discrete speech tokens to align with discrete text tokens for language modelling, which depends on an audio codec with residual connections or independent group tokens, such a codec usually leverages large scale and diverse datasets training to ensure that the discrete speech codes have good representation for varied domain, noise, style data reconstruction as well as a well-designed codec quantizer and encoder-decoder architecture for discrete token language modelling. This paper introduces Flow-Omni, a continuous speech token based GPT-4o like model, capable of real-time speech interaction and low streaming latency. Specifically, first, instead of cross-entropy loss only, we combine flow matching loss with a pretrained autoregressive LLM and a small MLP network to predict the probability distribution of the continuous-valued speech tokens from speech prompt. second, we incorporated the continuous speech tokens to Flow-Omni multi-modality training, thereby achieving robust speech-to-speech performance with discrete text tokens and continuous speech tokens together. Experiments demonstrate that, compared to discrete text and speech multi-modality training and its variants, the continuous speech tokens mitigate robustness issues by avoiding the inherent flaws of discrete speech code's representation loss for LLM. 4 authors · Dec 6, 2024
1 GOAT-TTS: LLM-based Text-To-Speech Generation Optimized via A Dual-Branch Architecture While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-k layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data. 10 authors · Apr 14
- Koel-TTS: Enhancing LLM based Speech Generation with Preference Alignment and Classifier Free Guidance While autoregressive speech token generation models produce speech with remarkable variety and naturalness, their inherent lack of controllability often results in issues such as hallucinations and undesired vocalizations that do not conform to conditioning inputs. We introduce Koel-TTS, a suite of enhanced encoder-decoder Transformer TTS models that address these challenges by incorporating preference alignment techniques guided by automatic speech recognition and speaker verification models. Additionally, we incorporate classifier-free guidance to further improve synthesis adherence to the transcript and reference speaker audio. Our experiments demonstrate that these optimizations significantly enhance target speaker similarity, intelligibility, and naturalness of synthesized speech. Notably, Koel-TTS directly maps text and context audio to acoustic tokens, and on the aforementioned metrics, outperforms state-of-the-art TTS models, despite being trained on a significantly smaller dataset. Audio samples and demos are available on our website. 9 authors · Feb 7
- When LLMs Meets Acoustic Landmarks: An Efficient Approach to Integrate Speech into Large Language Models for Depression Detection Depression is a critical concern in global mental health, prompting extensive research into AI-based detection methods. Among various AI technologies, Large Language Models (LLMs) stand out for their versatility in mental healthcare applications. However, their primary limitation arises from their exclusive dependence on textual input, which constrains their overall capabilities. Furthermore, the utilization of LLMs in identifying and analyzing depressive states is still relatively untapped. In this paper, we present an innovative approach to integrating acoustic speech information into the LLMs framework for multimodal depression detection. We investigate an efficient method for depression detection by integrating speech signals into LLMs utilizing Acoustic Landmarks. By incorporating acoustic landmarks, which are specific to the pronunciation of spoken words, our method adds critical dimensions to text transcripts. This integration also provides insights into the unique speech patterns of individuals, revealing the potential mental states of individuals. Evaluations of the proposed approach on the DAIC-WOZ dataset reveal state-of-the-art results when compared with existing Audio-Text baselines. In addition, this approach is not only valuable for the detection of depression but also represents a new perspective in enhancing the ability of LLMs to comprehend and process speech signals. 7 authors · Feb 17, 2024
18 Towards Achieving Human Parity on End-to-end Simultaneous Speech Translation via LLM Agent In this paper, we present Cross Language Agent -- Simultaneous Interpretation, CLASI, a high-quality and human-like Simultaneous Speech Translation (SiST) System. Inspired by professional human interpreters, we utilize a novel data-driven read-write strategy to balance the translation quality and latency. To address the challenge of translating in-domain terminologies, CLASI employs a multi-modal retrieving module to obtain relevant information to augment the translation. Supported by LLMs, our approach can generate error-tolerated translation by considering the input audio, historical context, and retrieved information. Experimental results show that our system outperforms other systems by significant margins. Aligned with professional human interpreters, we evaluate CLASI with a better human evaluation metric, valid information proportion (VIP), which measures the amount of information that can be successfully conveyed to the listeners. In the real-world scenarios, where the speeches are often disfluent, informal, and unclear, CLASI achieves VIP of 81.3% and 78.0% for Chinese-to-English and English-to-Chinese translation directions, respectively. In contrast, state-of-the-art commercial or open-source systems only achieve 35.4% and 41.6%. On the extremely hard dataset, where other systems achieve under 13% VIP, CLASI can still achieve 70% VIP. 7 authors · Jul 31, 2024 8
1 Seed-ASR: Understanding Diverse Speech and Contexts with LLM-based Speech Recognition Modern automatic speech recognition (ASR) model is required to accurately transcribe diverse speech signals (from different domains, languages, accents, etc) given the specific contextual information in various application scenarios. Classic end-to-end models fused with extra language models perform well, but mainly in data matching scenarios and are gradually approaching a bottleneck. In this work, we introduce Seed-ASR, a large language model (LLM) based speech recognition model. Seed-ASR is developed based on the framework of audio conditioned LLM (AcLLM), leveraging the capabilities of LLMs by inputting continuous speech representations together with contextual information into the LLM. Through stage-wise large-scale training and the elicitation of context-aware capabilities in LLM, Seed-ASR demonstrates significant improvement over end-to-end models on comprehensive evaluation sets, including multiple domains, accents/dialects and languages. Additionally, Seed-ASR can be further deployed to support specific needs in various scenarios without requiring extra language models. Compared to recently released large ASR models, Seed-ASR achieves 10%-40% reduction in word (or character, for Chinese) error rates on Chinese and English public test sets, further demonstrating its powerful performance. 55 authors · Jul 5, 2024
- Enhancing the Stability of LLM-based Speech Generation Systems through Self-Supervised Representations Large Language Models (LLMs) are one of the most promising technologies for the next era of speech generation systems, due to their scalability and in-context learning capabilities. Nevertheless, they suffer from multiple stability issues at inference time, such as hallucinations, content skipping or speech repetitions. In this work, we introduce a new self-supervised Voice Conversion (VC) architecture which can be used to learn to encode transitory features, such as content, separately from stationary ones, such as speaker ID or recording conditions, creating speaker-disentangled representations. Using speaker-disentangled codes to train LLMs for text-to-speech (TTS) allows the LLM to generate the content and the style of the speech only from the text, similarly to humans, while the speaker identity is provided by the decoder of the VC model. Results show that LLMs trained over speaker-disentangled self-supervised representations provide an improvement of 4.7pp in speaker similarity over SOTA entangled representations, and a word error rate (WER) 5.4pp lower. Furthermore, they achieve higher naturalness than human recordings of the LibriTTS test-other dataset. Finally, we show that using explicit reference embedding negatively impacts intelligibility (stability), with WER increasing by 14pp compared to the model that only uses text to infer the style. 9 authors · Feb 5, 2024
- Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM Rapidly developing large language models (LLMs) have brought tremendous intelligent applications. Especially, the GPT-4o's excellent duplex speech interaction ability has brought impressive experience to users. Researchers have recently proposed several multi-modal LLMs in this direction that can achieve user-agent speech-to-speech conversations. This paper proposes a novel speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is that the speech input and output modalities can be easily connected to a textual LLM while keeping the LLM's parameters frozen throughout the training process. We design a three-stage training strategy for modeling both the speech input and output, enabling Freeze-Omni to obtain speech-to-speech conversation ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while achieving low latency end-to-end spoken response. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, giving Freeze-Omni a more natural style of dialogue ability between users and agents. In summary, Freeze-Omni holds great potential to conduct speech-to-speech dialogue based on a multimodal LLM under the condition of a frozen LLM, avoiding the catastrophic forgetting problem caused by limited data and training resources. 8 authors · Nov 1, 2024
2 Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMS Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates. Imperial College London · Oct 26 1
6 Zero-AVSR: Zero-Shot Audio-Visual Speech Recognition with LLMs by Learning Language-Agnostic Speech Representations We explore a novel zero-shot Audio-Visual Speech Recognition (AVSR) framework, dubbed Zero-AVSR, which enables speech recognition in target languages without requiring any audio-visual speech data in those languages. Specifically, we introduce the Audio-Visual Speech Romanizer (AV-Romanizer), which learns language-agnostic speech representations by predicting Roman text. Then, by leveraging the strong multilingual modeling capabilities of Large Language Models (LLMs), we propose converting the predicted Roman text into language-specific graphemes, forming the proposed Cascaded Zero-AVSR. Taking it a step further, we explore a unified Zero-AVSR approach by directly integrating the audio-visual speech representations encoded by the AV-Romanizer into the LLM. This is achieved through finetuning the adapter and the LLM using our proposed multi-task learning scheme. To capture the wide spectrum of phonetic and linguistic diversity, we also introduce a Multilingual Audio-Visual Romanized Corpus (MARC) consisting of 2,916 hours of audio-visual speech data across 82 languages, along with transcriptions in both language-specific graphemes and Roman text. Extensive analysis and experiments confirm that the proposed Zero-AVSR framework has the potential to expand language support beyond the languages seen during the training of the AV-Romanizer. 5 authors · Mar 8 2
- FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR. 4 authors · Jan 24
31 HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis Large language models (LLM)-based speech synthesis has been widely adopted in zero-shot speech synthesis. However, they require a large-scale data and possess the same limitations as previous autoregressive speech models, including slow inference speed and lack of robustness. This paper proposes HierSpeech++, a fast and strong zero-shot speech synthesizer for text-to-speech (TTS) and voice conversion (VC). We verified that hierarchical speech synthesis frameworks could significantly improve the robustness and expressiveness of the synthetic speech. Furthermore, we significantly improve the naturalness and speaker similarity of synthetic speech even in zero-shot speech synthesis scenarios. For text-to-speech, we adopt the text-to-vec framework, which generates a self-supervised speech representation and an F0 representation based on text representations and prosody prompts. Then, HierSpeech++ generates speech from the generated vector, F0, and voice prompt. We further introduce a high-efficient speech super-resolution framework from 16 kHz to 48 kHz. The experimental results demonstrated that the hierarchical variational autoencoder could be a strong zero-shot speech synthesizer given that it outperforms LLM-based and diffusion-based models. Moreover, we achieved the first human-level quality zero-shot speech synthesis. Audio samples and source code are available at https://github.com/sh-lee-prml/HierSpeechpp. 4 authors · Nov 21, 2023 1
1 LLaST: Improved End-to-end Speech Translation System Leveraged by Large Language Models We introduces LLaST, a framework for building high-performance Large Language model based Speech-to-text Translation systems. We address the limitations of end-to-end speech translation(E2E ST) models by exploring model architecture design and optimization techniques tailored for LLMs. Our approach includes LLM-based speech translation architecture design, ASR-augmented training, multilingual data augmentation, and dual-LoRA optimization. Our approach demonstrates superior performance on the CoVoST-2 benchmark and showcases exceptional scaling capabilities powered by LLMs. We believe this effective method will serve as a strong baseline for speech translation and provide insights for future improvements of the LLM-based speech translation framework. We release the data, code and models in https://github.com/openaudiolab/LLaST. 5 authors · Jul 22, 2024
- Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data. 6 authors · Apr 1, 2024 2
- Speak While You Think: Streaming Speech Synthesis During Text Generation Large Language Models (LLMs) demonstrate impressive capabilities, yet interaction with these models is mostly facilitated through text. Using Text-To-Speech to synthesize LLM outputs typically results in notable latency, which is impractical for fluent voice conversations. We propose LLM2Speech, an architecture to synthesize speech while text is being generated by an LLM which yields significant latency reduction. LLM2Speech mimics the predictions of a non-streaming teacher model while limiting the exposure to future context in order to enable streaming. It exploits the hidden embeddings of the LLM, a by-product of the text generation that contains informative semantic context. Experimental results show that LLM2Speech maintains the teacher's quality while reducing the latency to enable natural conversations. 6 authors · Sep 20, 2023
2 X-LLM: Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages Large language models (LLMs) have demonstrated remarkable language abilities. GPT-4, based on advanced LLMs, exhibits extraordinary multimodal capabilities beyond previous visual language models. We attribute this to the use of more advanced LLMs compared with previous multimodal models. Unfortunately, the model architecture and training strategies of GPT-4 are unknown. To endow LLMs with multimodal capabilities, we propose X-LLM, which converts Multi-modalities (images, speech, videos) into foreign languages using X2L interfaces and inputs them into a large Language model (ChatGLM). Specifically, X-LLM aligns multiple frozen single-modal encoders and a frozen LLM using X2L interfaces, where ``X'' denotes multi-modalities such as image, speech, and videos, and ``L'' denotes languages. X-LLM's training consists of three stages: (1) Converting Multimodal Information: The first stage trains each X2L interface to align with its respective single-modal encoder separately to convert multimodal information into languages. (2) Aligning X2L representations with the LLM: single-modal encoders are aligned with the LLM through X2L interfaces independently. (3) Integrating multiple modalities: all single-modal encoders are aligned with the LLM through X2L interfaces to integrate multimodal capabilities into the LLM. Our experiments show that X-LLM demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 84.5\% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. And we also conduct quantitative tests on using LLM for ASR and multimodal ASR, hoping to promote the era of LLM-based speech recognition. 7 authors · May 6, 2023 7
1 Recent Advances in Speech Language Models: A Survey Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field. 8 authors · Oct 1, 2024
- Decoding Hate: Exploring Language Models' Reactions to Hate Speech Hate speech is a harmful form of online expression, often manifesting as derogatory posts. It is a significant risk in digital environments. With the rise of Large Language Models (LLMs), there is concern about their potential to replicate hate speech patterns, given their training on vast amounts of unmoderated internet data. Understanding how LLMs respond to hate speech is crucial for their responsible deployment. However, the behaviour of LLMs towards hate speech has been limited compared. This paper investigates the reactions of seven state-of-the-art LLMs (LLaMA 2, Vicuna, LLaMA 3, Mistral, GPT-3.5, GPT-4, and Gemini Pro) to hate speech. Through qualitative analysis, we aim to reveal the spectrum of responses these models produce, highlighting their capacity to handle hate speech inputs. We also discuss strategies to mitigate hate speech generation by LLMs, particularly through fine-tuning and guideline guardrailing. Finally, we explore the models' responses to hate speech framed in politically correct language. 2 authors · Oct 1, 2024
- Harnessing Artificial Intelligence to Combat Online Hate: Exploring the Challenges and Opportunities of Large Language Models in Hate Speech Detection Large language models (LLMs) excel in many diverse applications beyond language generation, e.g., translation, summarization, and sentiment analysis. One intriguing application is in text classification. This becomes pertinent in the realm of identifying hateful or toxic speech -- a domain fraught with challenges and ethical dilemmas. In our study, we have two objectives: firstly, to offer a literature review revolving around LLMs as classifiers, emphasizing their role in detecting and classifying hateful or toxic content. Subsequently, we explore the efficacy of several LLMs in classifying hate speech: identifying which LLMs excel in this task as well as their underlying attributes and training. Providing insight into the factors that contribute to an LLM proficiency (or lack thereof) in discerning hateful content. By combining a comprehensive literature review with an empirical analysis, our paper strives to shed light on the capabilities and constraints of LLMs in the crucial domain of hate speech detection. 3 authors · Mar 12, 2024
59 LLaMA-Omni: Seamless Speech Interaction with Large Language Models Models like GPT-4o enable real-time interaction with large language models (LLMs) through speech, significantly enhancing user experience compared to traditional text-based interaction. However, there is still a lack of exploration on how to build speech interaction models based on open-source LLMs. To address this, we propose LLaMA-Omni, a novel model architecture designed for low-latency and high-quality speech interaction with LLMs. LLaMA-Omni integrates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming speech decoder. It eliminates the need for speech transcription, and can simultaneously generate text and speech responses directly from speech instructions with extremely low latency. We build our model based on the latest Llama-3.1-8B-Instruct model. To align the model with speech interaction scenarios, we construct a dataset named InstructS2S-200K, which includes 200K speech instructions and corresponding speech responses. Experimental results show that compared to previous speech-language models, LLaMA-Omni provides better responses in both content and style, with a response latency as low as 226ms. Additionally, training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for the efficient development of speech-language models in the future. 6 authors · Sep 10, 2024 5
- SpeechLLM-as-Judges: Towards General and Interpretable Speech Quality Evaluation Generative speech technologies are progressing rapidly, but evaluating the perceptual quality of synthetic speech remains a core challenge. Existing methods typically rely on scalar scores or binary decisions, which lack interpretability and generalization across tasks and languages. We present SpeechLLM-as-Judges, a new paradigm for enabling large language models (LLMs) to conduct structured and explanation-based speech quality evaluation. To support this direction, we introduce SpeechEval, a large-scale dataset containing 32,207 multilingual speech clips and 128,754 annotations spanning four tasks: quality assessment, pairwise comparison, improvement suggestion, and deepfake detection. Based on this resource, we develop SQ-LLM, a speech-quality-aware LLM trained with chain-of-thought reasoning and reward optimization to improve capability. Experimental results show that SQ-LLM delivers strong performance across tasks and languages, revealing the potential of this paradigm for advancing speech quality evaluation. Relevant resources will be open-sourced. 12 authors · Oct 16
- VoiceBench: Benchmarking LLM-Based Voice Assistants Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field. 6 authors · Oct 22, 2024
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding The integration of pre-trained text-based large language models (LLM) with speech input has enabled instruction-following capabilities for diverse speech tasks. This integration requires the use of a speech encoder, a speech adapter, and an LLM, trained on diverse tasks. We propose the use of discrete speech units (DSU), rather than continuous-valued speech encoder outputs, that are converted to the LLM token embedding space using the speech adapter. We generate DSU using a self-supervised speech encoder followed by k-means clustering. The proposed model shows robust performance on speech inputs from seen/unseen domains and instruction-following capability in spoken question answering. We also explore various types of DSU extracted from different layers of the self-supervised speech encoder, as well as Mel frequency Cepstral Coefficients (MFCC). Our findings suggest that the ASR task and datasets are not crucial in instruction-tuning for spoken question answering tasks. 6 authors · Jun 13, 2024
7 On decoder-only architecture for speech-to-text and large language model integration Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion. 11 authors · Jul 8, 2023
4 CosyVoice 3: Towards In-the-wild Speech Generation via Scaling-up and Post-training In our prior works, we introduced a scalable streaming speech synthesis model, CosyVoice 2, which integrates a large language model (LLM) and a chunk-aware flow matching (FM) model, and achieves low-latency bi-streaming speech synthesis and human-parity quality. Despite these advancements, CosyVoice 2 exhibits limitations in language coverage, domain diversity, data volume, text formats, and post-training techniques. In this paper, we present CosyVoice 3, an improved model designed for zero-shot multilingual speech synthesis in the wild, surpassing its predecessor in content consistency, speaker similarity, and prosody naturalness. Key features of CosyVoice 3 include: 1) A novel speech tokenizer to improve prosody naturalness, developed via supervised multi-task training, including automatic speech recognition, speech emotion recognition, language identification, audio event detection, and speaker analysis. 2) A new differentiable reward model for post-training applicable not only to CosyVoice 3 but also to other LLM-based speech synthesis models. 3) Dataset Size Scaling: Training data is expanded from ten thousand hours to one million hours, encompassing 9 languages and 18 Chinese dialects across various domains and text formats. 4) Model Size Scaling: Model parameters are increased from 0.5 billion to 1.5 billion, resulting in enhanced performance on our multilingual benchmark due to the larger model capacity. These advancements contribute significantly to the progress of speech synthesis in the wild. We encourage readers to listen to the demo at https://funaudiollm.github.io/cosyvoice3. 21 authors · May 23 1
- Advancing Multi-talker ASR Performance with Large Language Models Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works. 9 authors · Aug 30, 2024
4 Whisper-GPT: A Hybrid Representation Audio Large Language Model We propose WHISPER-GPT: A generative large language model (LLM) for speech and music that allows us to work with continuous audio representations and discrete tokens simultaneously as part of a single architecture. There has been a huge surge in generative audio, speech, and music models that utilize discrete audio tokens derived from neural compression algorithms, e.g. ENCODEC. However, one of the major drawbacks of this approach is handling the context length. It blows up for high-fidelity generative architecture if one has to account for all the audio contents at various frequencies for the next token prediction. By combining continuous audio representation like the spectrogram and discrete acoustic tokens, we retain the best of both worlds: Have all the information needed from the audio at a specific time instance in a single token, yet allow LLM to predict the future token to allow for sampling and other benefits discrete space provides. We show how our architecture improves the perplexity and negative log-likelihood scores for the next token prediction compared to a token-based LLM for speech and music. 1 authors · Dec 16, 2024 2
17 SALMONN: Towards Generic Hearing Abilities for Large Language Models Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning etc. SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning etc. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \url{https://github.com/bytedance/SALMONN}, and the training code and model checkpoints will be released upon acceptance. 9 authors · Oct 20, 2023 1
3 OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation Full-duplex spoken dialogue systems significantly advance over traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex communication capabilities, we propose a multi-stage post-training scheme that progressively adapts a text-based large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. Throughout all training stages, we standardize the data using a flattening operation, which allows us to unify the training methods and the model architecture across different modalities and tasks. Our approach offers a straightforward modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems. Audio samples of dialogues generated by OmniFlatten can be found at this web site (https://omniflatten.github.io/). 9 authors · Oct 23, 2024
- EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released. 15 authors · Apr 17
- Blending LLMs into Cascaded Speech Translation: KIT's Offline Speech Translation System for IWSLT 2024 Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST). In this paper, we present KIT's offline submission in the constrained + LLM track by incorporating recently proposed techniques that can be added to any cascaded speech translation. Specifically, we integrate Mistral-7Bmistralai/Mistral-7B-Instruct-v0.1 into our system to enhance it in two ways. Firstly, we refine the ASR outputs by utilizing the N-best lists generated by our system and fine-tuning the LLM to predict the transcript accurately. Secondly, we refine the MT outputs at the document level by fine-tuning the LLM, leveraging both ASR and MT predictions to improve translation quality. We find that integrating the LLM into the ASR and MT systems results in an absolute improvement of 0.3% in Word Error Rate and 0.65% in COMET for tst2019 test set. In challenging test sets with overlapping speakers and background noise, we find that integrating LLM is not beneficial due to poor ASR performance. Here, we use ASR with chunked long-form decoding to improve context usage that may be unavailable when transcribing with Voice Activity Detection segmentation alone. 7 authors · Jun 24, 2024
6 Speech-to-Text Adapter and Speech-to-Entity Retriever Augmented LLMs for Speech Understanding Large Language Models (LLMs) have been applied in the speech domain, often incurring a performance drop due to misaligned between speech and language representations. To bridge this gap, we propose a joint speech and language model (SLM) using a Speech2Text adapter, which maps speech into text token embedding space without speech information loss. Additionally, using a CTC-based blank-filtering, we can reduce the speech sequence length to that of text. In speech MultiWoz dataset (DSTC11 challenge), SLM largely improves the dialog state tracking (DST) performance (24.7% to 28.4% accuracy). Further to address errors on rare entities, we augment SLM with a Speech2Entity retriever, which uses speech to retrieve relevant entities, and then adds them to the original SLM input as a prefix. With this retrieval-augmented SLM (ReSLM), the DST performance jumps to 34.6% accuracy. Moreover, augmenting the ASR task with the dialog understanding task improves the ASR performance from 9.4% to 8.5% WER. 7 authors · Jun 8, 2023
- Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems Voice-based conversational AI systems increasingly rely on cascaded architectures that combine speech-to-text (STT), large language models (LLMs), and text-to-speech (TTS) components. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data sampled from over 300,000 AI-conducted job interviews. We used an LLM-as-a-Judge automated evaluation framework to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of five production configurations reveals that a stack combining Google's STT, GPT-4.1, and Cartesia's TTS outperforms alternatives in both objective quality metrics and user satisfaction scores. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversations and contribute a validated evaluation methodology for human-AI interactions. 6 authors · Jul 15
- LlamaPartialSpoof: An LLM-Driven Fake Speech Dataset Simulating Disinformation Generation Previous fake speech datasets were constructed from a defender's perspective to develop countermeasure (CM) systems without considering diverse motivations of attackers. To better align with real-life scenarios, we created LlamaPartialSpoof, a 130-hour dataset contains both fully and partially fake speech, using a large language model (LLM) and voice cloning technologies to evaluate the robustness of CMs. By examining information valuable to both attackers and defenders, we identify several key vulnerabilities in current CM systems, which can be exploited to enhance attack success rates, including biases toward certain text-to-speech models or concatenation methods. Our experimental results indicate that current fake speech detection system struggle to generalize to unseen scenarios, achieving a best performance of 24.44% equal error rate. 5 authors · Sep 23, 2024
- Hate Speech Detection and Target Identification in Devanagari Languages via Parameter Efficient Fine-Tuning of LLMs The detection of hate speech has become increasingly important in combating online hostility and its real-world consequences. Despite recent advancements, there is limited research addressing hate speech detection in Devanagari-scripted languages, where resources and tools are scarce. While large language models (LLMs) have shown promise in language-related tasks, traditional fine-tuning approaches are often infeasible given the size of the models. In this paper, we propose a Parameter Efficient Fine tuning (PEFT) based solution for hate speech detection and target identification. We evaluate multiple LLMs on the Devanagari dataset provided by (Thapa et al., 2025), which contains annotated instances in 2 languages - Hindi and Nepali. The results demonstrate the efficacy of our approach in handling Devanagari-scripted content. 6 authors · Dec 22, 2024
15 Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that have previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task. 5 authors · Jun 5 2
7 From TOWER to SPIRE: Adding the Speech Modality to a Text-Only LLM Large language models (LLMs) have shown remarkable performance and generalization capabilities across multiple languages and tasks, making them very attractive targets for multi-modality integration (e.g., images or speech). In this work, we extend an existing LLM to the speech modality via speech discretization and continued pre-training. In particular, we are interested in multilingual LLMs, such as TOWER, as their pre-training setting allows us to treat discretized speech input as an additional translation language. The resulting open-source model, SPIRE, is able to transcribe and translate English speech input while maintaining TOWER's original performance on translation-related tasks, showcasing that discretized speech input integration as an additional language is feasible during LLM adaptation. We make our code and models available to the community. 8 authors · Mar 13 2
7 Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing In visual speech processing, context modeling capability is one of the most important requirements due to the ambiguous nature of lip movements. For example, homophenes, words that share identical lip movements but produce different sounds, can be distinguished by considering the context. In this paper, we propose a novel framework, namely Visual Speech Processing incorporated with LLMs (VSP-LLM), to maximize the context modeling ability by bringing the overwhelming power of LLMs. Specifically, VSP-LLM is designed to perform multi-tasks of visual speech recognition and translation, where the given instructions control the type of task. The input video is mapped to the input latent space of a LLM by employing a self-supervised visual speech model. Focused on the fact that there is redundant information in input frames, we propose a novel deduplication method that reduces the embedded visual features by employing visual speech units. Through the proposed deduplication and Low Rank Adaptors (LoRA), VSP-LLM can be trained in a computationally efficient manner. In the translation dataset, the MuAViC benchmark, we demonstrate that VSP-LLM can more effectively recognize and translate lip movements with just 15 hours of labeled data, compared to the recent translation model trained with 433 hours of labeld data. 4 authors · Feb 23, 2024 2
- LLM-C3MOD: A Human-LLM Collaborative System for Cross-Cultural Hate Speech Moderation Content moderation is a global challenge, yet major tech platforms prioritize high-resource languages, leaving low-resource languages with scarce native moderators. Since effective moderation depends on understanding contextual cues, this imbalance increases the risk of improper moderation due to non-native moderators' limited cultural understanding. Through a user study, we identify that non-native moderators struggle with interpreting culturally-specific knowledge, sentiment, and internet culture in the hate speech moderation. To assist them, we present LLM-C3MOD, a human-LLM collaborative pipeline with three steps: (1) RAG-enhanced cultural context annotations; (2) initial LLM-based moderation; and (3) targeted human moderation for cases lacking LLM consensus. Evaluated on a Korean hate speech dataset with Indonesian and German participants, our system achieves 78% accuracy (surpassing GPT-4o's 71% baseline), while reducing human workload by 83.6%. Notably, human moderators excel at nuanced contents where LLMs struggle. Our findings suggest that non-native moderators, when properly supported by LLMs, can effectively contribute to cross-cultural hate speech moderation. 5 authors · Mar 10
- Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at https://michelleramanovich.github.io/spectron/spectron 9 authors · May 24, 2023
1 SparQLe: Speech Queries to Text Translation Through LLMs With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications. 2 authors · Feb 13
37 LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc. 6 authors · Apr 22 2
22 LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data. 5 authors · May 5 2
8 DubWise: Video-Guided Speech Duration Control in Multimodal LLM-based Text-to-Speech for Dubbing Audio-visual alignment after dubbing is a challenging research problem. To this end, we propose a novel method, DubWise Multi-modal Large Language Model (LLM)-based Text-to-Speech (TTS), which can control the speech duration of synthesized speech in such a way that it aligns well with the speakers lip movements given in the reference video even when the spoken text is different or in a different language. To accomplish this, we propose to utilize cross-modal attention techniques in a pre-trained GPT-based TTS. We combine linguistic tokens from text, speaker identity tokens via a voice cloning network, and video tokens via a proposed duration controller network. We demonstrate the effectiveness of our system on the Lip2Wav-Chemistry and LRS2 datasets. Also, the proposed method achieves improved lip sync and naturalness compared to the SOTAs for the same language but different text (i.e., non-parallel) and the different language, different text (i.e., cross-lingual) scenarios. 5 authors · Jun 13, 2024 1
5 LLM in the Loop: Creating the PARADEHATE Dataset for Hate Speech Detoxification Detoxification, the task of rewriting harmful language into non-toxic text, has become increasingly important amid the growing prevalence of toxic content online. However, high-quality parallel datasets for detoxification, especially for hate speech, remain scarce due to the cost and sensitivity of human annotation. In this paper, we propose a novel LLM-in-the-loop pipeline leveraging GPT-4o-mini for automated detoxification. We first replicate the ParaDetox pipeline by replacing human annotators with an LLM and show that the LLM performs comparably to human annotation. Building on this, we construct PARADEHATE, a large-scale parallel dataset specifically for hatespeech detoxification. We release PARADEHATE as a benchmark of over 8K hate/non-hate text pairs and evaluate a wide range of baseline methods. Experimental results show that models such as BART, fine-tuned on PARADEHATE, achieve better performance in style accuracy, content preservation, and fluency, demonstrating the effectiveness of LLM-generated detoxification text as a scalable alternative to human annotation. 7 authors · Jun 2 3
1 SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation Full-duplex multimodal large language models (LLMs) provide a unified framework for addressing diverse speech understanding and generation tasks, enabling more natural and seamless human-machine conversations. Unlike traditional modularised conversational AI systems, which separate speech recognition, understanding, and text-to-speech generation into distinct components, multimodal LLMs operate as single end-to-end models. This streamlined design eliminates error propagation across components and fully leverages the rich non-verbal information embedded in input speech signals. We introduce SALMONN-omni, a codec-free, full-duplex speech understanding and generation model capable of simultaneously listening to its own generated speech and background sounds while speaking. To support this capability, we propose a novel duplex spoken dialogue framework incorporating a ``thinking'' mechanism that facilitates asynchronous text and speech generation relying on embeddings instead of codecs (quantized speech and audio tokens). Experimental results demonstrate SALMONN-omni's versatility across a broad range of streaming speech tasks, including speech recognition, speech enhancement, and spoken question answering. Additionally, SALMONN-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full-duplex conversational AI systems. To the best of our knowledge, SALMONN-omni is the first codec-free model of its kind. A full technical report along with model checkpoints will be released soon. 10 authors · Nov 27, 2024
- mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage. 7 authors · Jun 9
- SLIDE: Integrating Speech Language Model with LLM for Spontaneous Spoken Dialogue Generation Recently, ``textless" speech language models (SLMs) based on speech units have made huge progress in generating naturalistic speech, including non-verbal vocalizations. However, the generated speech samples often lack semantic coherence. In this paper, we propose SLM and LLM Integration for spontaneous spoken Dialogue gEneration (SLIDE). Specifically, we first utilize an LLM to generate the textual content of spoken dialogue. Next, we convert the textual dialogues into phoneme sequences and use a two-tower transformer-based duration predictor to predict the duration of each phoneme. Finally, an SLM conditioned on the spoken phoneme sequences is used to vocalize the textual dialogue. Experimental results on the Fisher dataset demonstrate that our system can generate naturalistic spoken dialogue while maintaining high semantic coherence. 6 authors · Jan 1
85 Soundwave: Less is More for Speech-Text Alignment in LLMs Existing end-to-end speech large language models (LLMs) usually rely on large-scale annotated data for training, while data-efficient training has not been discussed in depth. We focus on two fundamental problems between speech and text: the representation space gap and sequence length inconsistency. We propose Soundwave, which utilizes an efficient training strategy and a novel architecture to address these issues. Results show that Soundwave outperforms the advanced Qwen2-Audio in speech translation and AIR-Bench speech tasks, using only one-fiftieth of the training data. Further analysis shows that Soundwave still retains its intelligence during conversation. The project is available at https://github.com/FreedomIntelligence/Soundwave. 6 authors · Feb 18 5
14 MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation. The Chinese University of Hong Kong · Sep 29 2
3 Adaptive Audio-Visual Speech Recognition via Matryoshka-Based Multimodal LLMs Audio-Visual Speech Recognition (AVSR) leverages both audio and visual modalities to enhance speech recognition robustness, particularly in noisy environments. Recent advancements in Large Language Models (LLMs) have demonstrated their effectiveness in speech recognition, including AVSR. However, due to the significant length of speech representations, direct integration with LLMs imposes substantial computational costs. Prior approaches address this by compressing speech representations before feeding them into LLMs. However, higher compression ratios often lead to performance degradation, necessitating a trade-off between computational efficiency and recognition accuracy. To address this challenge, we propose Llama-MTSK, the first Matryoshka-based Multimodal LLM for AVSR, which enables flexible adaptation of the audio-visual token allocation based on specific computational constraints while preserving high performance. Our approach, inspired by Matryoshka Representation Learning, encodes audio-visual representations at multiple granularities within a single model, eliminating the need to train separate models for different compression levels. Moreover, to efficiently fine-tune the LLM, we introduce three LoRA-based Matryoshka strategies using global and scale-specific LoRA modules. Extensive evaluations on the two largest AVSR datasets demonstrate that Llama-MTSK achieves state-of-the-art results, matching or surpassing models trained independently at fixed compression levels. 3 authors · Mar 8 2
6 Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS. 25 authors · Mar 3 1
- Just ASR + LLM? A Study on Speech Large Language Models' Ability to Identify and Understand Speaker in Spoken Dialogue In recent years, we have observed a rapid advancement in speech language models (SpeechLLMs), catching up with humans' listening and reasoning abilities. SpeechLLMs have demonstrated impressive spoken dialog question-answering (SQA) performance in benchmarks like Gaokao, the English listening test of the college entrance exam in China, which seemingly requires understanding both the spoken content and voice characteristics of speakers in a conversation. However, after carefully examining Gaokao's questions, we find the correct answers to many questions can be inferred from the conversation transcript alone, i.e.\ without speaker segmentation and identification. Our evaluation of state-of-the-art models Qwen-Audio and WavLLM on both Gaokao and our proposed "What Do You Like?" dataset shows a significantly higher accuracy in these context-based questions than in identity-critical questions, which can only be answered reliably with correct speaker identification. The results and analysis suggest that when solving SQA, the current SpeechLLMs exhibit limited speaker awareness from the audio and behave similarly to an LLM reasoning from the conversation transcription without sound. We propose that tasks focused on identity-critical questions could offer a more accurate evaluation framework of SpeechLLMs in SQA. 7 authors · Sep 7, 2024
3 BatonVoice: An Operationalist Framework for Enhancing Controllable Speech Synthesis with Linguistic Intelligence from LLMs The rise of Large Language Models (LLMs) is reshaping multimodel models, with speech synthesis being a prominent application. However, existing approaches often underutilize the linguistic intelligence of these models, typically failing to leverage their powerful instruction-following capabilities. This limitation hinders the model's ability to follow text instructions for controllable Text-to-Speech~(TTS). To address this, we propose a new paradigm inspired by ``operationalism'' that decouples instruction understanding from speech generation. We introduce BatonVoice, a framework where an LLM acts as a ``conductor'', understanding user instructions and generating a textual ``plan'' -- explicit vocal features (e.g., pitch, energy). A separate TTS model, the ``orchestra'', then generates the speech from these features. To realize this component, we develop BatonTTS, a TTS model trained specifically for this task. Our experiments demonstrate that BatonVoice achieves strong performance in controllable and emotional speech synthesis, outperforming strong open- and closed-source baselines. Notably, our approach enables remarkable zero-shot cross-lingual generalization, accurately applying feature control abilities to languages unseen during post-training. This demonstrates that objectifying speech into textual vocal features can more effectively unlock the linguistic intelligence of LLMs. Tencent · Sep 30 2
1 Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released. 8 authors · May 23
4 1-800-SHARED-TASKS @ NLU of Devanagari Script Languages: Detection of Language, Hate Speech, and Targets using LLMs This paper presents a detailed system description of our entry for the CHiPSAL 2025 shared task, focusing on language detection, hate speech identification, and target detection in Devanagari script languages. We experimented with a combination of large language models and their ensembles, including MuRIL, IndicBERT, and Gemma-2, and leveraged unique techniques like focal loss to address challenges in the natural understanding of Devanagari languages, such as multilingual processing and class imbalance. Our approach achieved competitive results across all tasks: F1 of 0.9980, 0.7652, and 0.6804 for Sub-tasks A, B, and C respectively. This work provides insights into the effectiveness of transformer models in tasks with domain-specific and linguistic challenges, as well as areas for potential improvement in future iterations. 7 authors · Nov 11, 2024
22 VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ . LLMs for Reasoning · Sep 26 2
1 Speech Translation with Large Language Models: An Industrial Practice Given the great success of large language models (LLMs) across various tasks, in this paper, we introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained LLM. By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations, even from long audio inputs. Furthermore, our findings indicate that the implementation of Chain-of-Thought (CoT) prompting can yield advantages in the context of LLM-ST. Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST, establishing a new benchmark in the field of speech translation. Demo: https://speechtranslation.github.io/llm-st/. 7 authors · Dec 21, 2023 1
- Transferable speech-to-text large language model alignment module By leveraging the power of Large Language Models(LLMs) and speech foundation models, state of the art speech-text bimodal works can achieve challenging tasks like spoken translation(ST) and question answering(SQA) altogether with much simpler architectures. In this paper, we utilize the capability of Whisper encoder and pre-trained Yi-6B. Empirical results reveal that modal alignment can be achieved with one layer module and hundred hours of speech-text multitask corpus. We further swap the Yi-6B with human preferences aligned version of Yi-6B-Chat during inference, and discover that the alignment capability is applicable as well. In addition, the alignment subspace revealed by singular value decomposition(SVD) also implies linear alignment subspace is sparse, which leaves the possibility to concatenate other features like voice-print or video to expand modality. 3 authors · Jun 19, 2024
1 Generative Speech Recognition Error Correction with Large Language Models and Task-Activating Prompting We explore the ability of large language models (LLMs) to act as speech recognition post-processors that perform rescoring and error correction. Our first focus is on instruction prompting to let LLMs perform these task without fine-tuning, for which we evaluate different prompting schemes, both zero- and few-shot in-context learning, and a novel task activation prompting method that combines causal instructions and demonstration to increase its context windows. Next, we show that rescoring only by in-context learning with frozen LLMs achieves results that are competitive with rescoring by domain-tuned LMs, using a pretrained first-pass recognition system and rescoring output on two out-of-domain tasks (ATIS and WSJ). By combining prompting techniques with fine-tuning we achieve error rates below the N-best oracle level, showcasing the generalization power of the LLMs. 6 authors · Sep 27, 2023
5 AAD-LLM: Neural Attention-Driven Auditory Scene Understanding Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io. 9 authors · Feb 23 3
1 LLM-Enhanced Dialogue Management for Full-Duplex Spoken Dialogue Systems Achieving full-duplex communication in spoken dialogue systems (SDS) requires real-time coordination between listening, speaking, and thinking. This paper proposes a semantic voice activity detection (VAD) module as a dialogue manager (DM) to efficiently manage turn-taking in full-duplex SDS. Implemented as a lightweight (0.5B) LLM fine-tuned on full-duplex conversation data, the semantic VAD predicts four control tokens to regulate turn-switching and turn-keeping, distinguishing between intentional and unintentional barge-ins while detecting query completion for handling user pauses and hesitations. By processing input speech in short intervals, the semantic VAD enables real-time decision-making, while the core dialogue engine (CDE) is only activated for response generation, reducing computational overhead. This design allows independent DM optimization without retraining the CDE, balancing interaction accuracy and inference efficiency for scalable, next-generation full-duplex SDS. 6 authors · Feb 19
- SALM: Speech-augmented Language Model with In-context Learning for Speech Recognition and Translation We present a novel Speech Augmented Language Model (SALM) with {\em multitask} and {\em in-context} learning capabilities. SALM comprises a frozen text LLM, a audio encoder, a modality adapter module, and LoRA layers to accommodate speech input and associated task instructions. The unified SALM not only achieves performance on par with task-specific Conformer baselines for Automatic Speech Recognition (ASR) and Speech Translation (AST), but also exhibits zero-shot in-context learning capabilities, demonstrated through keyword-boosting task for ASR and AST. Moreover, {\em speech supervised in-context training} is proposed to bridge the gap between LLM training and downstream speech tasks, which further boosts the in-context learning ability of speech-to-text models. Proposed model is open-sourced via NeMo toolkit. 9 authors · Oct 13, 2023
1 Speech Translation Refinement using Large Language Models Recent advancements in large language models (LLMs) have demonstrated their remarkable capabilities across various language tasks. Inspired by the success of text-to-text translation refinement, this paper investigates how LLMs can improve the performance of speech translation by introducing a joint refinement process. Through the joint refinement of speech translation (ST) and automatic speech recognition (ASR) transcription via LLMs, the performance of the ST model is significantly improved in both training-free in-context learning and parameter-efficient fine-tuning scenarios. Additionally, we explore the effect of document-level context on refinement under the context-aware fine-tuning scenario. Experimental results on the MuST-C and CoVoST 2 datasets, which include seven translation tasks, demonstrate the effectiveness of the proposed approach using several popular LLMs including GPT-3.5-turbo, LLaMA3-8B, and Mistral-12B. Further analysis further suggests that jointly refining both transcription and translation yields better performance compared to refining translation alone. Meanwhile, incorporating document-level context significantly enhances refinement performance. We release our code and datasets on GitHub. 6 authors · Jan 25
5 TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM. 5 authors · Apr 9
3 Scaling and Enhancing LLM-based AVSR: A Sparse Mixture of Projectors Approach Audio-Visual Speech Recognition (AVSR) enhances robustness in noisy environments by integrating visual cues. While recent advances integrate Large Language Models (LLMs) into AVSR, their high computational cost hinders deployment in resource-constrained settings. To address this, we propose Llama-SMoP, an efficient Multimodal LLM that employs a Sparse Mixture of Projectors (SMoP) module to scale model capacity without increasing inference costs. By incorporating sparsely-gated mixture-of-experts (MoE) projectors, Llama-SMoP enables the use of smaller LLMs while maintaining strong performance. We explore three SMoP configurations and show that Llama-SMoP DEDR (Disjoint-Experts, Disjoint-Routers), which uses modality-specific routers and experts, achieves superior performance on ASR, VSR, and AVSR tasks. Ablation studies confirm its effectiveness in expert activation, scalability, and noise robustness. 5 authors · May 20 2
1 Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens We propose Llama-Mimi, a speech language model that uses a unified tokenizer and a single Transformer decoder to jointly model sequences of interleaved semantic and acoustic tokens. Comprehensive evaluation shows that Llama-Mimi achieves state-of-the-art performance in acoustic consistency and possesses the ability to preserve speaker identity. Our analysis further demonstrates that increasing the number of quantizers improves acoustic fidelity but degrades linguistic performance, highlighting the inherent challenge of maintaining long-term coherence. We additionally introduce an LLM-as-a-Judge-based evaluation to assess the spoken content quality of generated outputs. Our models, code, and speech samples are publicly available. 4 authors · Sep 18
1 An Embarrassingly Simple Approach for LLM with Strong ASR Capacity In this paper, we focus on solving one of the most important tasks in the field of speech processing, i.e., automatic speech recognition (ASR), with speech foundation encoders and large language models (LLM). Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM. We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task. To be more specific, we benchmark and explore various combinations of LLMs and speech encoders, leading to the optimal LLM-based ASR system, which we call SLAM-ASR. The proposed SLAM-ASR provides a clean setup and little task-specific design, where only the linear projector is trained. To the best of our knowledge, SLAM-ASR achieves the best performance on the Librispeech benchmark among LLM-based ASR models and even outperforms the latest LLM-based audio-universal model trained on massive pair data. Finally, we explore the capability emergence of LLM-based ASR in the process of modal alignment. We hope that our study can facilitate the research on extending LLM with cross-modality capacity and shed light on the LLM-based ASR community. 11 authors · Feb 13, 2024
- LingVarBench: Benchmarking LLM for Automated Named Entity Recognition in Structured Synthetic Spoken Transcriptions Phone call transcript labeling is prohibitively expensive (approximately 2 USD per minute) due to privacy regulations, consent requirements, and manual annotation costs requiring 3 hours of expert time per hour of audio. Existing extraction methods fail on conversational speech containing disfluencies, interruptions, and speaker overlap. We introduce LingVarBench, a synthetic data generation pipeline that addresses these constraints through automated validation. First, we prompt an LLM to generate realistic structured field values across multiple use cases. Second, we recursively prompt the model to transform these values into thousands of natural conversational utterances containing typical phone call characteristics. Third, we validate each synthetic utterance by testing whether a separate LLM-based extractor can recover the original structured information. We employ DSPy's SIMBA optimizer to automatically synthesize extraction prompts from validated synthetic transcripts, eliminating manual prompt engineering. Our optimized prompts achieve up to 95 percent accuracy for numeric fields (vs. 88-89 percent zero-shot), 90 percent for names (vs. 47-79 percent), and over 80 percent for dates (vs. 72-77 percent) on real customer transcripts, demonstrating substantial gains over zero-shot prompting. The synthetic-to-real transfer demonstrates that conversational patterns learned from generated data generalize effectively to authentic phone calls containing background noise and domain-specific terminology. LingVarBench provides the first systematic benchmark for structured extraction from synthetic conversational data, demonstrating that automated prompt optimization overcomes cost and privacy barriers preventing large-scale phone call analysis in commercial settings. 3 authors · Aug 13
- BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing The emergence of large language models (LLMs) has sparked significant interest in extending their remarkable language capabilities to speech. However, modality alignment between speech and text still remains an open problem. Current solutions can be categorized into two strategies. One is a cascaded approach where outputs (tokens or states) of a separately trained speech recognition system are used as inputs for LLMs, which limits their potential in modeling alignment between speech and text. The other is an end-to-end approach that relies on speech instruction data, which is very difficult to collect in large quantities. In this paper, we address these issues and propose the BLSP approach that Bootstraps Language-Speech Pre-training via behavior alignment of continuation writing. We achieve this by learning a lightweight modality adapter between a frozen speech encoder and an LLM, ensuring that the LLM exhibits the same generation behavior regardless of the modality of input: a speech segment or its transcript. The training process can be divided into two steps. The first step prompts an LLM to generate texts with speech transcripts as prefixes, obtaining text continuations. In the second step, these continuations are used as supervised signals to train the modality adapter in an end-to-end manner. We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios. 8 authors · Sep 2, 2023
11 Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis Text-to-Speech (TTS) systems face ongoing challenges in processing complex linguistic features, handling polyphonic expressions, and producing natural-sounding multilingual speech - capabilities that are crucial for future AI applications. In this paper, we present Fish-Speech, a novel framework that implements a serial fast-slow Dual Autoregressive (Dual-AR) architecture to enhance the stability of Grouped Finite Scalar Vector Quantization (GFSQ) in sequence generation tasks. This architecture improves codebook processing efficiency while maintaining high-fidelity outputs, making it particularly effective for AI interactions and voice cloning. Fish-Speech leverages Large Language Models (LLMs) for linguistic feature extraction, eliminating the need for traditional grapheme-to-phoneme (G2P) conversion and thereby streamlining the synthesis pipeline and enhancing multilingual support. Additionally, we developed FF-GAN through GFSQ to achieve superior compression ratios and near 100\% codebook utilization. Our approach addresses key limitations of current TTS systems while providing a foundation for more sophisticated, context-aware speech synthesis. Experimental results show that Fish-Speech significantly outperforms baseline models in handling complex linguistic scenarios and voice cloning tasks, demonstrating its potential to advance TTS technology in AI applications. The implementation is open source at https://github.com/fishaudio/fish-speech{https://github.com/fishaudio/fish-speech}. 7 authors · Nov 2, 2024 1
10 End-to-End Speech Recognition Contextualization with Large Language Models In recent years, Large Language Models (LLMs) have garnered significant attention from the research community due to their exceptional performance and generalization capabilities. In this paper, we introduce a novel method for contextualizing speech recognition models incorporating LLMs. Our approach casts speech recognition as a mixed-modal language modeling task based on a pretrained LLM. We provide audio features, along with optional text tokens for context, to train the system to complete transcriptions in a decoder-only fashion. As a result, the system is implicitly incentivized to learn how to leverage unstructured contextual information during training. Our empirical results demonstrate a significant improvement in performance, with a 6% WER reduction when additional textual context is provided. Moreover, we find that our method performs competitively and improve by 7.5% WER overall and 17% WER on rare words against a baseline contextualized RNN-T system that has been trained on more than twenty five times larger speech dataset. Overall, we demonstrate that by only adding a handful number of trainable parameters via adapters, we can unlock contextualized speech recognition capability for the pretrained LLM while keeping the same text-only input functionality. 6 authors · Sep 19, 2023 1
2 Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model This paper explores the potential of constructing an AI spoken dialogue system that "thinks how to respond" and "thinks how to speak" simultaneously, which more closely aligns with the human speech production process compared to the current cascade pipeline of independent chatbot and Text-to-Speech (TTS) modules. We hypothesize that Large Language Models (LLMs) with billions of parameters possess significant speech understanding capabilities and can jointly model dialogue responses and linguistic features. We conduct two sets of experiments: 1) Prosodic structure prediction, a typical front-end task in TTS, demonstrating the speech understanding ability of LLMs, and 2) Further integrating dialogue response and a wide array of linguistic features using a unified encoding format. Our results indicate that the LLM-based approach is a promising direction for building unified spoken dialogue systems. 3 authors · Sep 19, 2023
- Group Relative Policy Optimization for Speech Recognition Speech Recognition has seen a dramatic shift towards adopting Large Language Models (LLMs). This shift is partly driven by good scalability properties demonstrated by LLMs, ability to leverage large amounts of labelled, unlabelled speech and text data, streaming capabilities with auto-regressive framework and multi-tasking with instruction following characteristics of LLMs. However, simple next-token prediction objective, typically employed with LLMs, have certain limitations in performance and challenges with hallucinations. In this paper, we propose application of Group Relative Policy Optimization (GRPO) to enable reinforcement learning from human feedback for automatic speech recognition (ASR). We design simple rule based reward functions to guide the policy updates. We demonstrate significant improvements in word error rate (upto 18.4% relative), reduction in hallucinations, increased robustness on out-of-domain datasets and effectiveness in domain adaptation. 4 authors · Sep 2
- MTalk-Bench: Evaluating Speech-to-Speech Models in Multi-Turn Dialogues via Arena-style and Rubrics Protocols The rapid advancement of speech-to-speech (S2S) large language models (LLMs) has significantly improved real-time spoken interaction. However, current evaluation frameworks remain inadequate for assessing performance in complex, multi-turn dialogues. To address this, we introduce MTalk-Bench, a multi-turn S2S benchmark covering three core dimensions: Semantic Information, Paralinguistic Information, and Ambient Sound. Each dimension includes nine realistic scenarios, along with targeted tasks to assess specific capabilities such as reasoning. Our dual-method evaluation framework combines Arena-style evaluation (pairwise comparison) and Rubrics-based evaluation (absolute scoring) for relative and absolute assessment. The benchmark includes both model and human outputs, evaluated by human evaluators and LLMs. Experimental results reveal two sets of findings. Overall performance of S2S LLMs: (1) models excel at semantic information processing yet underperform on paralinguistic information and ambient sounds perception; (2) models typically regain coherence by increasing response length, sacrificing efficiency in multi-turn dialogues; (3) modality-aware, task-specific designs outperform brute scaling. Evaluation framework and reliability: (1) Arena and Rubrics yield consistent, complementary rankings, but reliable distinctions emerge only when performance gaps are large; (2) LLM-as-a-judge aligns with humans when gaps are clear or criteria explicit, but exhibits position and length biases and is reliable on nonverbal evaluation only with text annotations. These results highlight current limitations in S2S evaluation and the need for more robust, speech-aware assessment frameworks. 9 authors · Aug 22
- OSUM: Advancing Open Speech Understanding Models with Limited Resources in Academia Large Language Models (LLMs) have made significant progress in various downstream tasks, inspiring the development of Speech Understanding Language Models (SULMs) to enable comprehensive speech-based interactions. However, most advanced SULMs are developed by the industry, leveraging large-scale datasets and computational resources that are not readily available to the academic community. Moreover, the lack of transparency in training details creates additional barriers to further innovation. In this study, we present OSUM, an Open Speech Understanding Model designed to explore the potential of training SLUMs under constrained academic resources. The OSUM model combines a Whisper encoder with a Qwen2 LLM and supports a wide range of speech tasks, including speech recognition (ASR), speech recognition with timestamps (SRWT), vocal event detection (VED), speech emotion recognition (SER), speaking style recognition (SSR), speaker gender classification (SGC), speaker age prediction (SAP), and speech-to-text chat (STTC). By employing an ASR+X training strategy, OSUM achieves efficient and stable multi-task training by simultaneously optimizing ASR alongside target tasks. Beyond delivering strong performance, OSUM emphasizes transparency by providing openly available data preparation and training methodologies, offering valuable insights and practical guidance for the academic community. By doing so, we aim to accelerate research and innovation in advanced SULM technologies. 21 authors · Jan 22
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website. 4 authors · Sep 12, 2024
- An End-to-End Speech Summarization Using Large Language Model Abstractive Speech Summarization (SSum) aims to generate human-like text summaries from spoken content. It encounters difficulties in handling long speech input and capturing the intricate cross-modal mapping between long speech inputs and short text summaries. Research on large language models (LLMs) and multimodal information fusion has provided new insights for addressing these challenges. In this paper, we propose an end-to-end SSum model that utilizes Q-Former as a connector for the audio-text modality and employs LLMs to generate text summaries directly from speech features. We adopt a multi-stage training approach that includes LLM based ASR and Text Summarization (TSum) tasks as auxiliary tasks. ASR tasks are used to align feature spaces and enhance the LLM's ability to handle longer speech. Then, we utilize a curriculum learning strategy to facilitate the model's transition from TSum to SSum. Finally, our model achieves competitive performance on the How-2 dataset. 8 authors · Jul 2, 2024
- AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Our system is publicly available at https://github.com/AIGC-Audio/AudioGPT. 13 authors · Apr 25, 2023
14 Speechless: Speech Instruction Training Without Speech for Low Resource Languages The rapid growth of voice assistants powered by large language models (LLM) has highlighted a need for speech instruction data to train these systems. Despite the abundance of speech recognition data, there is a notable scarcity of speech instruction data, which is essential for fine-tuning models to understand and execute spoken commands. Generating high-quality synthetic speech requires a good text-to-speech (TTS) model, which may not be available to low resource languages. Our novel approach addresses this challenge by halting synthesis at the semantic representation level, bypassing the need for TTS. We achieve this by aligning synthetic semantic representations with the pre-trained Whisper encoder, enabling an LLM to be fine-tuned on text instructions while maintaining the ability to understand spoken instructions during inference. This simplified training process is a promising approach to building voice assistant for low-resource languages. 9 authors · May 22 2
3 How to Connect Speech Foundation Models and Large Language Models? What Matters and What Does Not The remarkable performance achieved by Large Language Models (LLM) has driven research efforts to leverage them for a wide range of tasks and input modalities. In speech-to-text (S2T) tasks, the emerging solution consists of projecting the output of the encoder of a Speech Foundational Model (SFM) into the LLM embedding space through an adapter module. However, no work has yet investigated how much the downstream-task performance depends on each component (SFM, adapter, LLM) nor whether the best design of the adapter depends on the chosen SFM and LLM. To fill this gap, we evaluate the combination of 5 adapter modules, 2 LLMs (Mistral and Llama), and 2 SFMs (Whisper and SeamlessM4T) on two widespread S2T tasks, namely Automatic Speech Recognition and Speech Translation. Our results demonstrate that the SFM plays a pivotal role in downstream performance, while the adapter choice has moderate impact and depends on the SFM and LLM. 12 authors · Sep 25, 2024
2 LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems. 3 authors · Sep 13, 2024 1
2 A Multimodal Approach to Device-Directed Speech Detection with Large Language Models Interactions with virtual assistants typically start with a predefined trigger phrase followed by the user command. To make interactions with the assistant more intuitive, we explore whether it is feasible to drop the requirement that users must begin each command with a trigger phrase. We explore this task in three ways: First, we train classifiers using only acoustic information obtained from the audio waveform. Second, we take the decoder outputs of an automatic speech recognition (ASR) system, such as 1-best hypotheses, as input features to a large language model (LLM). Finally, we explore a multimodal system that combines acoustic and lexical features, as well as ASR decoder signals in an LLM. Using multimodal information yields relative equal-error-rate improvements over text-only and audio-only models of up to 39% and 61%. Increasing the size of the LLM and training with low-rank adaption leads to further relative EER reductions of up to 18% on our dataset. 7 authors · Mar 21, 2024
1 ParaStyleTTS: Toward Efficient and Robust Paralinguistic Style Control for Expressive Text-to-Speech Generation Controlling speaking style in text-to-speech (TTS) systems has become a growing focus in both academia and industry. While many existing approaches rely on reference audio to guide style generation, such methods are often impractical due to privacy concerns and limited accessibility. More recently, large language models (LLMs) have been used to control speaking style through natural language prompts; however, their high computational cost, lack of interpretability, and sensitivity to prompt phrasing limit their applicability in real-time and resource-constrained environments. In this work, we propose ParaStyleTTS, a lightweight and interpretable TTS framework that enables expressive style control from text prompts alone. ParaStyleTTS features a novel two-level style adaptation architecture that separates prosodic and paralinguistic speech style modeling. It allows fine-grained and robust control over factors such as emotion, gender, and age. Unlike LLM-based methods, ParaStyleTTS maintains consistent style realization across varied prompt formulations and is well-suited for real-world applications, including on-device and low-resource deployment. Experimental results show that ParaStyleTTS generates high-quality speech with performance comparable to state-of-the-art LLM-based systems while being 30x faster, using 8x fewer parameters, and requiring 2.5x less CUDA memory. Moreover, ParaStyleTTS exhibits superior robustness and controllability over paralinguistic speaking styles, providing a practical and efficient solution for style-controllable text-to-speech generation. Demo can be found at https://parastyletts.github.io/ParaStyleTTS_Demo/. Code can be found at https://github.com/haoweilou/ParaStyleTTS. 4 authors · Oct 21
1 Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC 4 authors · Sep 18 2
1 Zero Resource Cross-Lingual Part Of Speech Tagging Part of speech tagging in zero-resource settings can be an effective approach for low-resource languages when no labeled training data is available. Existing systems use two main techniques for POS tagging i.e. pretrained multilingual large language models(LLM) or project the source language labels into the zero resource target language and train a sequence labeling model on it. We explore the latter approach using the off-the-shelf alignment module and train a hidden Markov model(HMM) to predict the POS tags. We evaluate transfer learning setup with English as a source language and French, German, and Spanish as target languages for part-of-speech tagging. Our conclusion is that projected alignment data in zero-resource language can be beneficial to predict POS tags. 1 authors · Jan 11, 2024
- UtterTune: LoRA-Based Target-Language Pronunciation Edit and Control in Multilingual Text-to-Speech We propose UtterTune, a lightweight adaptation method that fine-tunes a multilingual text-to-speech (TTS) system based on a large language model (LLM) architecture, designed to enhance the controllability of pronunciation in a target language while preserving performance in others. While LLM architectures have enabled TTS models to achieve remarkable naturalness, accurately modeling grapheme-to-phoneme (G2P) mapping and prosody remains challenging, especially when the model omits an explicit G2P module and directly processes minimally encoded text (e.g., byte-pair encoding). UtterTune leverages low-rank adaptation to enable the control of segmental pronunciation and pitch accent at the phoneme level for Japanese speech, the target language in this paper, while maintaining naturalness and speaker similarity in a zero-shot setting. Objective and subjective evaluations confirm its effectiveness. 1 authors · Aug 13
- JoyTTS: LLM-based Spoken Chatbot With Voice Cloning JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git. 3 authors · Jul 3 1
- Retrieval-Enhanced Few-Shot Prompting for Speech Event Extraction Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features. 1 authors · Apr 30
- Applying LLM and Topic Modelling in Psychotherapeutic Contexts This study explores the use of Large language models to analyze therapist remarks in a psychotherapeutic setting. The paper focuses on the application of BERTopic, a machine learning-based topic modeling tool, to the dialogue of two different groups of therapists (classical and modern), which makes it possible to identify and describe a set of topics that consistently emerge across these groups. The paper describes in detail the chosen algorithm for BERTopic, which included creating a vector space from a corpus of therapist remarks, reducing its dimensionality, clustering the space, and creating and optimizing topic representation. Along with the automatic topical modeling by the BERTopic, the research involved an expert assessment of the findings and manual topic structure optimization. The topic modeling results highlighted the most common and stable topics in therapists speech, offering insights into how language patterns in therapy develop and remain stable across different therapeutic styles. This work contributes to the growing field of machine learning in psychotherapy by demonstrating the potential of automated methods to improve both the practice and training of therapists. The study highlights the value of topic modeling as a tool for gaining a deeper understanding of therapeutic dialogue and offers new opportunities for improving therapeutic effectiveness and clinical supervision. 3 authors · Dec 23, 2024
- The Promises and Pitfalls of LLM Annotations in Dataset Labeling: a Case Study on Media Bias Detection High annotation costs from hiring or crowdsourcing complicate the creation of large, high-quality datasets needed for training reliable text classifiers. Recent research suggests using Large Language Models (LLMs) to automate the annotation process, reducing these costs while maintaining data quality. LLMs have shown promising results in annotating downstream tasks like hate speech detection and political framing. Building on the success in these areas, this study investigates whether LLMs are viable for annotating the complex task of media bias detection and whether a downstream media bias classifier can be trained on such data. We create annolexical, the first large-scale dataset for media bias classification with over 48000 synthetically annotated examples. Our classifier, fine-tuned on this dataset, surpasses all of the annotator LLMs by 5-9 percent in Matthews Correlation Coefficient (MCC) and performs close to or outperforms the model trained on human-labeled data when evaluated on two media bias benchmark datasets (BABE and BASIL). This study demonstrates how our approach significantly reduces the cost of dataset creation in the media bias domain and, by extension, the development of classifiers, while our subsequent behavioral stress-testing reveals some of its current limitations and trade-offs. 7 authors · Nov 17, 2024
- LLM-based speaker diarization correction: A generalizable approach Speaker diarization is necessary for interpreting conversations transcribed using automated speech recognition (ASR) tools. Despite significant developments in diarization methods, diarization accuracy remains an issue. Here, we investigate the use of large language models (LLMs) for diarization correction as a post-processing step. LLMs were fine-tuned using the Fisher corpus, a large dataset of transcribed conversations. The ability of the models to improve diarization accuracy in a holdout dataset was measured. We report that fine-tuned LLMs can markedly improve diarization accuracy. However, model performance is constrained to transcripts produced using the same ASR tool as the transcripts used for fine-tuning, limiting generalizability. To address this constraint, an ensemble model was developed by combining weights from three separate models, each fine-tuned using transcripts from a different ASR tool. The ensemble model demonstrated better overall performance than each of the ASR-specific models, suggesting that a generalizable and ASR-agnostic approach may be achievable. We hope to make these models accessible through public-facing APIs for use by third-party applications. 3 authors · Jun 7, 2024
14 Boosting Large Language Model for Speech Synthesis: An Empirical Study Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision. Nevertheless, most of the previous work focuses on prompting LLMs with perception abilities like auditory comprehension, and the effective approach for augmenting LLMs with speech synthesis capabilities remains ambiguous. In this paper, we conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E. We compare three integration methods between LLMs and speech synthesis models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder. Experimental results show that, using LoRA method to fine-tune LLMs directly to boost the speech synthesis capability does not work well, and superposed LLMs and VALL-E can improve the quality of generated speech both in speaker similarity and word error rate (WER). Among these three methods, coupled methods leveraging LLMs as the text encoder can achieve the best performance, making it outperform original speech synthesis models with a consistently better speaker similarity and a significant (10.9%) WER reduction. 7 authors · Dec 30, 2023 1
11 Investigating Decoder-only Large Language Models for Speech-to-text Translation Large language models (LLMs), known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains, present a promising avenue for enhancing speech-related tasks. In this paper, we focus on integrating decoder-only LLMs to the task of speech-to-text translation (S2TT). We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation. Additionally, we investigate the effects of different parameter-efficient fine-tuning techniques and task formulation. Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data. We also conduct analyses to validate the design choices of our proposed model and bring insights to the integration of LLMs to S2TT. 7 authors · Jul 3, 2024 1
2 GPT Models Meet Robotic Applications: Co-Speech Gesturing Chat System This technical paper introduces a chatting robot system that utilizes recent advancements in large-scale language models (LLMs) such as GPT-3 and ChatGPT. The system is integrated with a co-speech gesture generation system, which selects appropriate gestures based on the conceptual meaning of speech. Our motivation is to explore ways of utilizing the recent progress in LLMs for practical robotic applications, which benefits the development of both chatbots and LLMs. Specifically, it enables the development of highly responsive chatbot systems by leveraging LLMs and adds visual effects to the user interface of LLMs as an additional value. The source code for the system is available on GitHub for our in-house robot (https://github.com/microsoft/LabanotationSuite/tree/master/MSRAbotChatSimulation) and GitHub for Toyota HSR (https://github.com/microsoft/GPT-Enabled-HSR-CoSpeechGestures). 5 authors · May 10, 2023
1 Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings. 9 authors · Sep 13, 2024
- IntrinsicVoice: Empowering LLMs with Intrinsic Real-time Voice Interaction Abilities Current methods of building LLMs with voice interaction capabilities rely heavily on explicit text autoregressive generation before or during speech response generation to maintain content quality, which unfortunately brings computational overhead and increases latency in multi-turn interactions. To address this, we introduce IntrinsicVoic,e an LLM designed with intrinsic real-time voice interaction capabilities. IntrinsicVoice aims to facilitate the transfer of textual capabilities of pre-trained LLMs to the speech modality by mitigating the modality gap between text and speech. Our novelty architecture, GroupFormer, can reduce speech sequences to lengths comparable to text sequences while generating high-quality audio, significantly reducing the length difference between speech and text, speeding up inference, and alleviating long-text modeling issues. Additionally, we construct a multi-turn speech-to-speech dialogue dataset named \method-500k which includes nearly 500k turns of speech-to-speech dialogues, and a cross-modality training strategy to enhance the semantic alignment between speech and text. Experimental results demonstrate that IntrinsicVoice can generate high-quality speech response with latency lower than 100ms in multi-turn dialogue scenarios. Demos are available at https://instrinsicvoice.github.io/. 13 authors · Oct 9, 2024
- BLSP-KD: Bootstrapping Language-Speech Pre-training via Knowledge Distillation Recent end-to-end approaches have shown promise in extending large language models (LLMs) to speech inputs, but face limitations in directly assessing and optimizing alignment quality and fail to achieve fine-grained alignment due to speech-text length mismatch. We introduce BLSP-KD, a novel approach for Bootstrapping Language-Speech Pretraining via Knowledge Distillation, which addresses these limitations through two key techniques. First, it optimizes speech-text alignment by minimizing the divergence between the LLM's next-token prediction distributions for speech and text inputs using knowledge distillation. Second, it employs a continuous-integrate-andfire strategy to segment speech into tokens that correspond one-to-one with text tokens, enabling fine-grained alignment. We also introduce Partial LoRA (PLoRA), a new adaptation method supporting LLM finetuning for speech inputs under knowledge distillation. Quantitative evaluation shows that BLSP-KD outperforms previous end-to-end baselines and cascaded systems with comparable scale of parameters, facilitating general instruction-following capabilities for LLMs with speech inputs. This approach provides new possibilities for extending LLMs to spoken language interactions. 4 authors · May 29, 2024