new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 12

AIFS-CRPS: Ensemble forecasting using a model trained with a loss function based on the Continuous Ranked Probability Score

Over the last three decades, ensemble forecasts have become an integral part of forecasting the weather. They provide users with more complete information than single forecasts as they permit to estimate the probability of weather events by representing the sources of uncertainties and accounting for the day-to-day variability of error growth in the atmosphere. This paper presents a novel approach to obtain a weather forecast model for ensemble forecasting with machine-learning. AIFS-CRPS is a variant of the Artificial Intelligence Forecasting System (AIFS) developed at ECMWF. Its loss function is based on a proper score, the Continuous Ranked Probability Score (CRPS). For the loss, the almost fair CRPS is introduced because it approximately removes the bias in the score due to finite ensemble size yet avoids a degeneracy of the fair CRPS. The trained model is stochastic and can generate as many exchangeable members as desired and computationally feasible in inference. For medium-range forecasts AIFS-CRPS outperforms the physics-based Integrated Forecasting System (IFS) ensemble for the majority of variables and lead times. For subseasonal forecasts, AIFS-CRPS outperforms the IFS ensemble before calibration and is competitive with the IFS ensemble when forecasts are evaluated as anomalies to remove the influence of model biases.

FairSeg: A Large-Scale Medical Image Segmentation Dataset for Fairness Learning Using Segment Anything Model with Fair Error-Bound Scaling

Fairness in artificial intelligence models has gained significantly more attention in recent years, especially in the area of medicine, as fairness in medical models is critical to people's well-being and lives. High-quality medical fairness datasets are needed to promote fairness learning research. Existing medical fairness datasets are all for classification tasks, and no fairness datasets are available for medical segmentation, while medical segmentation is an equally important clinical task as classifications, which can provide detailed spatial information on organ abnormalities ready to be assessed by clinicians. In this paper, we propose the first fairness dataset for medical segmentation named Harvard-FairSeg with 10,000 subject samples. In addition, we propose a fair error-bound scaling approach to reweight the loss function with the upper error-bound in each identity group, using the segment anything model (SAM). We anticipate that the segmentation performance equity can be improved by explicitly tackling the hard cases with high training errors in each identity group. To facilitate fair comparisons, we utilize a novel equity-scaled segmentation performance metric to compare segmentation metrics in the context of fairness, such as the equity-scaled Dice coefficient. Through comprehensive experiments, we demonstrate that our fair error-bound scaling approach either has superior or comparable fairness performance to the state-of-the-art fairness learning models. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-fairseg10k.

FairTTTS: A Tree Test Time Simulation Method for Fairness-Aware Classification

Algorithmic decision-making has become deeply ingrained in many domains, yet biases in machine learning models can still produce discriminatory outcomes, often harming unprivileged groups. Achieving fair classification is inherently challenging, requiring a careful balance between predictive performance and ethical considerations. We present FairTTTS, a novel post-processing bias mitigation method inspired by the Tree Test Time Simulation (TTTS) method. Originally developed to enhance accuracy and robustness against adversarial inputs through probabilistic decision-path adjustments, TTTS serves as the foundation for FairTTTS. By building on this accuracy-enhancing technique, FairTTTS mitigates bias and improves predictive performance. FairTTTS uses a distance-based heuristic to adjust decisions at protected attribute nodes, ensuring fairness for unprivileged samples. This fairness-oriented adjustment occurs as a post-processing step, allowing FairTTTS to be applied to pre-trained models, diverse datasets, and various fairness metrics without retraining. Extensive evaluation on seven benchmark datasets shows that FairTTTS outperforms traditional methods in fairness improvement, achieving a 20.96% average increase over the baseline compared to 18.78% for related work, and further enhances accuracy by 0.55%. In contrast, competing methods typically reduce accuracy by 0.42%. These results confirm that FairTTTS effectively promotes more equitable decision-making while simultaneously improving predictive performance.

Fairness and Robustness of CLIP-Based Models for Chest X-rays

Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness