new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 11

MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery

Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.

Towards Accurate Differential Diagnosis with Large Language Models

An accurate differential diagnosis (DDx) is a cornerstone of medical care, often reached through an iterative process of interpretation that combines clinical history, physical examination, investigations and procedures. Interactive interfaces powered by Large Language Models (LLMs) present new opportunities to both assist and automate aspects of this process. In this study, we introduce an LLM optimized for diagnostic reasoning, and evaluate its ability to generate a DDx alone or as an aid to clinicians. 20 clinicians evaluated 302 challenging, real-world medical cases sourced from the New England Journal of Medicine (NEJM) case reports. Each case report was read by two clinicians, who were randomized to one of two assistive conditions: either assistance from search engines and standard medical resources, or LLM assistance in addition to these tools. All clinicians provided a baseline, unassisted DDx prior to using the respective assistive tools. Our LLM for DDx exhibited standalone performance that exceeded that of unassisted clinicians (top-10 accuracy 59.1% vs 33.6%, [p = 0.04]). Comparing the two assisted study arms, the DDx quality score was higher for clinicians assisted by our LLM (top-10 accuracy 51.7%) compared to clinicians without its assistance (36.1%) (McNemar's Test: 45.7, p < 0.01) and clinicians with search (44.4%) (4.75, p = 0.03). Further, clinicians assisted by our LLM arrived at more comprehensive differential lists than those without its assistance. Our study suggests that our LLM for DDx has potential to improve clinicians' diagnostic reasoning and accuracy in challenging cases, meriting further real-world evaluation for its ability to empower physicians and widen patients' access to specialist-level expertise.

Allowing humans to interactively guide machines where to look does not always improve a human-AI team's classification accuracy

Via thousands of papers in Explainable AI (XAI), attention maps vaswani2017attention and feature attribution maps bansal2020sam have been established as a common means for explaining the input features that are important to AI's decisions. It is an interesting but unexplored question whether allowing users to edit the importance scores of input features at test time would improve the human-AI team's accuracy on downstream tasks. In this paper, we address this question by taking CHM-Corr, a state-of-the-art, ante-hoc explanation method taesiri2022visual that first predicts patch-wise correspondences between the input and the training-set images, and then uses them to make classification decisions. We build an interactive interface on top of CHM-Corr, enabling users to directly edit the initial feature attribution map provided by CHM-Corr. Via our CHM-Corr++ interface, users gain insights into if, when, and how the model changes its outputs, enhancing understanding beyond static explanations. Our user study with 18 machine learning researchers who performed sim1,400 decisions shows that our interactive approach does not improve user accuracy on CUB-200 bird image classification over static explanations. This challenges the belief that interactivity inherently boosts XAI effectiveness~sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding and raises needs for future research. Our work contributes to the field by open-sourcing an interactive tool for manipulating model attention, and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on https://anonymous.4open.science/r/CHMCorrPlusPlus/{github}. Our interface are available http://137.184.82.109:7080/{here}.

ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language

The use of natural language interfaces (NLIs) for the creation of charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.

Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits

Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.

VideoMolmo: Spatio-Temporal Grounding Meets Pointing

Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.

SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration

We present SymbioticRAG, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.

GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons

Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. Availability and implementation: The standalone docker image for GDC Cohort Copilot is available at https://quay.io/repository/cdis/gdc-cohort-copilot. Source code is available at https://github.com/uc-cdis/gdc-cohort-copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds.

The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers

Evaluation of large language models (LLMs) for code has primarily relied on static benchmarks, including HumanEval (Chen et al., 2021), which measure the ability of LLMs to generate complete code that passes unit tests. As LLMs are increasingly used as programmer assistants, we study whether gains on existing benchmarks translate to gains in programmer productivity when coding with LLMs, including time spent coding. In addition to static benchmarks, we investigate the utility of preference metrics that might be used as proxies to measure LLM helpfulness, such as code acceptance or copy rates. To do so, we introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers, through either autocomplete or chat support. We conducted a user study (N=213) using RealHumanEval in which users interacted with six LLMs of varying base model performance. Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity; however gaps in benchmark versus human performance are not proportional -- a trend that holds across both forms of LLM support. In contrast, we find that programmer preferences do not correlate with their actual performance, motivating the need for better, human-centric proxy signals. We also open-source RealHumanEval to enable human-centric evaluation of new models and the study data to facilitate efforts to improve code models.

From Questions to Clinical Recommendations: Large Language Models Driving Evidence-Based Clinical Decision Making

Clinical evidence, derived from rigorous research and data analysis, provides healthcare professionals with reliable scientific foundations for informed decision-making. Integrating clinical evidence into real-time practice is challenging due to the enormous workload, complex professional processes, and time constraints. This highlights the need for tools that automate evidence synthesis to support more efficient and accurate decision making in clinical settings. This study introduces Quicker, an evidence-based clinical decision support system powered by large language models (LLMs), designed to automate evidence synthesis and generate clinical recommendations modeled after standard clinical guideline development processes. Quicker implements a fully automated chain that covers all phases, from questions to clinical recommendations, and further enables customized decision-making through integrated tools and interactive user interfaces. To evaluate Quicker's capabilities, we developed the Q2CRBench-3 benchmark dataset, based on clinical guideline development records for three different diseases. Experimental results highlighted Quicker's strong performance, with fine-grained question decomposition tailored to user preferences, retrieval sensitivities comparable to human experts, and literature screening performance approaching comprehensive inclusion of relevant studies. In addition, Quicker-assisted evidence assessment effectively supported human reviewers, while Quicker's recommendations were more comprehensive and logically coherent than those of clinicians. In system-level testing, collaboration between a single reviewer and Quicker reduced the time required for recommendation development to 20-40 minutes. In general, our findings affirm the potential of Quicker to help physicians make quicker and more reliable evidence-based clinical decisions.

AmadeusGPT: a natural language interface for interactive animal behavioral analysis

The process of quantifying and analyzing animal behavior involves translating the naturally occurring descriptive language of their actions into machine-readable code. Yet, codifying behavior analysis is often challenging without deep understanding of animal behavior and technical machine learning knowledge. To limit this gap, we introduce AmadeusGPT: a natural language interface that turns natural language descriptions of behaviors into machine-executable code. Large-language models (LLMs) such as GPT3.5 and GPT4 allow for interactive language-based queries that are potentially well suited for making interactive behavior analysis. However, the comprehension capability of these LLMs is limited by the context window size, which prevents it from remembering distant conversations. To overcome the context window limitation, we implement a novel dual-memory mechanism to allow communication between short-term and long-term memory using symbols as context pointers for retrieval and saving. Concretely, users directly use language-based definitions of behavior and our augmented GPT develops code based on the core AmadeusGPT API, which contains machine learning, computer vision, spatio-temporal reasoning, and visualization modules. Users then can interactively refine results, and seamlessly add new behavioral modules as needed. We benchmark AmadeusGPT and show we can produce state-of-the-art performance on the MABE 2022 behavior challenge tasks. Note, an end-user would not need to write any code to achieve this. Thus, collectively AmadeusGPT presents a novel way to merge deep biological knowledge, large-language models, and core computer vision modules into a more naturally intelligent system. Code and demos can be found at: https://github.com/AdaptiveMotorControlLab/AmadeusGPT.

CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields

We present CLIP-NeRF, a multi-modal 3D object manipulation method for neural radiance fields (NeRF). By leveraging the joint language-image embedding space of the recent Contrastive Language-Image Pre-Training (CLIP) model, we propose a unified framework that allows manipulating NeRF in a user-friendly way, using either a short text prompt or an exemplar image. Specifically, to combine the novel view synthesis capability of NeRF and the controllable manipulation ability of latent representations from generative models, we introduce a disentangled conditional NeRF architecture that allows individual control over both shape and appearance. This is achieved by performing the shape conditioning via applying a learned deformation field to the positional encoding and deferring color conditioning to the volumetric rendering stage. To bridge this disentangled latent representation to the CLIP embedding, we design two code mappers that take a CLIP embedding as input and update the latent codes to reflect the targeted editing. The mappers are trained with a CLIP-based matching loss to ensure the manipulation accuracy. Furthermore, we propose an inverse optimization method that accurately projects an input image to the latent codes for manipulation to enable editing on real images. We evaluate our approach by extensive experiments on a variety of text prompts and exemplar images and also provide an intuitive interface for interactive editing. Our implementation is available at https://cassiepython.github.io/clipnerf/

HappyFeat -- An interactive and efficient BCI framework for clinical applications

Brain-Computer Interface (BCI) systems allow users to perform actions by translating their brain activity into commands. Such systems usually need a training phase, consisting in training a classification algorithm to discriminate between mental states using specific features from the recorded signals. This phase of feature selection and training is crucial for BCI performance and presents specific constraints to be met in a clinical context, such as post-stroke rehabilitation. In this paper, we present HappyFeat, a software making Motor Imagery (MI) based BCI experiments easier, by gathering all necessary manipulations and analysis in a single convenient GUI and via automation of experiment or analysis parameters. The resulting workflow allows for effortlessly selecting the best features, helping to achieve good BCI performance in time-constrained environments. Alternative features based on Functional Connectivity can be used and compared or combined with Power Spectral Density, allowing a network-oriented approach. We then give details of HappyFeat's main mechanisms, and a review of its performances in typical use cases. We also show that it can be used as an efficient tool for comparing different metrics extracted from the signals, to train the classification algorithm. To this end, we show a comparison between the commonly-used Power Spectral Density and network metrics based on Functional Connectivity. HappyFeat is available as an open-source project which can be freely downloaded on GitHub.

Agent-Environment Alignment via Automated Interface Generation

Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as agent-environment misalignment. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned Interface Generation framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.

iControl3D: An Interactive System for Controllable 3D Scene Generation

3D content creation has long been a complex and time-consuming process, often requiring specialized skills and resources. While recent advancements have allowed for text-guided 3D object and scene generation, they still fall short of providing sufficient control over the generation process, leading to a gap between the user's creative vision and the generated results. In this paper, we present iControl3D, a novel interactive system that empowers users to generate and render customizable 3D scenes with precise control. To this end, a 3D creator interface has been developed to provide users with fine-grained control over the creation process. Technically, we leverage 3D meshes as an intermediary proxy to iteratively merge individual 2D diffusion-generated images into a cohesive and unified 3D scene representation. To ensure seamless integration of 3D meshes, we propose to perform boundary-aware depth alignment before fusing the newly generated mesh with the existing one in 3D space. Additionally, to effectively manage depth discrepancies between remote content and foreground, we propose to model remote content separately with an environment map instead of 3D meshes. Finally, our neural rendering interface enables users to build a radiance field of their scene online and navigate the entire scene. Extensive experiments have been conducted to demonstrate the effectiveness of our system. The code will be made available at https://github.com/xingyi-li/iControl3D.

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

Machine Learning (ML) models are increasingly used to make critical decisions in real-world applications, yet they have become more complex, making them harder to understand. To this end, researchers have proposed several techniques to explain model predictions. However, practitioners struggle to use these explainability techniques because they often do not know which one to choose and how to interpret the results of the explanations. In this work, we address these challenges by introducing TalkToModel: an interactive dialogue system for explaining machine learning models through conversations. Specifically, TalkToModel comprises of three key components: 1) a natural language interface for engaging in conversations, making ML model explainability highly accessible, 2) a dialogue engine that adapts to any tabular model and dataset, interprets natural language, maps it to appropriate explanations, and generates text responses, and 3) an execution component that constructs the explanations. We carried out extensive quantitative and human subject evaluations of TalkToModel. Overall, we found the conversational system understands user inputs on novel datasets and models with high accuracy, demonstrating the system's capacity to generalize to new situations. In real-world evaluations with humans, 73% of healthcare workers (e.g., doctors and nurses) agreed they would use TalkToModel over baseline point-and-click systems for explainability in a disease prediction task, and 85% of ML professionals agreed TalkToModel was easier to use for computing explanations. Our findings demonstrate that TalkToModel is more effective for model explainability than existing systems, introducing a new category of explainability tools for practitioners. Code & demo released here: https://github.com/dylan-slack/TalkToModel.

Interactive Natural Language Processing

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish less than half of tasks in sophisticated benchmarks such as AppWorld. We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments. We formalize this training as a partially observable Markov decision process and derive LOOP, a data- and memory-efficient variant of proximal policy optimization. LOOP uses no value network and maintains exactly one copy of the underlying LLM in memory, making its implementation straightforward and as memory-efficient as fine-tuning a single LLM. A 32-billion-parameter agent trained with LOOP in the AppWorld environment outperforms the much larger OpenAI o1 agent by 9 percentage points (15% relative). To our knowledge, this is the first reported application of RL to IDAs that interact with a stateful, multi-domain, multi-app environment via direct API calls. Our analysis sheds light on the effectiveness of RL in this area, showing that the agent learns to consult the API documentation, avoid unwarranted assumptions, minimize confabulation, and recover from setbacks.

RealCam-I2V: Real-World Image-to-Video Generation with Interactive Complex Camera Control

Recent advancements in camera-trajectory-guided image-to-video generation offer higher precision and better support for complex camera control compared to text-based approaches. However, they also introduce significant usability challenges, as users often struggle to provide precise camera parameters when working with arbitrary real-world images without knowledge of their depth nor scene scale. To address these real-world application issues, we propose RealCam-I2V, a novel diffusion-based video generation framework that integrates monocular metric depth estimation to establish 3D scene reconstruction in a preprocessing step. During training, the reconstructed 3D scene enables scaling camera parameters from relative to absolute values, ensuring compatibility and scale consistency across diverse real-world images. In inference, RealCam-I2V offers an intuitive interface where users can precisely draw camera trajectories by dragging within the 3D scene. To further enhance precise camera control and scene consistency, we propose scene-constrained noise shaping, which shapes high-level noise and also allows the framework to maintain dynamic, coherent video generation in lower noise stages. RealCam-I2V achieves significant improvements in controllability and video quality on the RealEstate10K and out-of-domain images. We further enables applications like camera-controlled looping video generation and generative frame interpolation. We will release our absolute-scale annotation, codes, and all checkpoints. Please see dynamic results in https://zgctroy.github.io/RealCam-I2V.

Redefining Robot Generalization Through Interactive Intelligence

Recent advances in large-scale machine learning have produced high-capacity foundation models capable of adapting to a broad array of downstream tasks. While such models hold great promise for robotics, the prevailing paradigm still portrays robots as single, autonomous decision-makers, performing tasks like manipulation and navigation, with limited human involvement. However, a large class of real-world robotic systems, including wearable robotics (e.g., prostheses, orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous, and require ongoing interactive coordination with human partners, challenging single-agent assumptions. In this position paper, we argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation. We propose a generalizable, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that echoes concepts of Hebbian and reinforcement-based plasticity. Although illustrated through the lens of cyborg systems, where wearable devices and human physiology are inseparably intertwined, the proposed framework is broadly applicable to robots operating in semi-autonomous or interactive contexts. By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.

SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark

Existing work in language grounding typically study single environments. How do we build unified models that apply across multiple environments? We propose the multi-environment Symbolic Interactive Language Grounding benchmark (SILG), which unifies a collection of diverse grounded language learning environments under a common interface. SILG consists of grid-world environments that require generalization to new dynamics, entities, and partially observed worlds (RTFM, Messenger, NetHack), as well as symbolic counterparts of visual worlds that require interpreting rich natural language with respect to complex scenes (ALFWorld, Touchdown). Together, these environments provide diverse grounding challenges in richness of observation space, action space, language specification, and plan complexity. In addition, we propose the first shared model architecture for RL on these environments, and evaluate recent advances such as egocentric local convolution, recurrent state-tracking, entity-centric attention, and pretrained LM using SILG. Our shared architecture achieves comparable performance to environment-specific architectures. Moreover, we find that many recent modelling advances do not result in significant gains on environments other than the one they were designed for. This highlights the need for a multi-environment benchmark. Finally, the best models significantly underperform humans on SILG, which suggests ample room for future work. We hope SILG enables the community to quickly identify new methodologies for language grounding that generalize to a diverse set of environments and their associated challenges.

Mobile-Env: An Evaluation Platform and Benchmark for Interactive Agents in LLM Era

Diverse evaluation benchmarks play a crucial role to assess a wide range of capabilities of large language models (LLM). Although plenty of endeavors have been dedicated to building valuable benchmarks, there is still little work aiming at evaluating the capability of LLM in multistep interactive environments. Noticing that LLM requires a text representation of the environment observations for interaction, we choose to fill such a blank by building a novel benchmark based on the information user interface (InfoUI). InfoUI consists of rich text contents and can be represented in some text formats, thus is suitable for the assessment of interaction ability of LLM. Additionally, the complex structures of InfoUI can further raise a challenge for LLM to understand structured texts rather than plain texts. An interaction platform is always used to evaluate an agent, however, there is still a lack of a satisfactory interaction platform dedicated to InfoUI. Consequently, we propose to build a novel easily-extendable, adaptable, and close-to-reality interaction platform, Mobile-Env, to provide a base for an appropriate benchmark. Based on Mobile-Env, an InfoUI task set WikiHow is then built to establish a benchmark for the multistep interaction capability of LLM in structured text-based environments. Agents based on a series of LLMs are tested on the task set to obtain an insight into the potential and challenge of LLM for InfoUI interaction. It is sincerely welcome that the community contribute new environments and new task sets for Mobile-Env to provide better test benchmarks and facilitate the development of the corresponding domains.

Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations

Recommender models excel at providing domain-specific item recommendations by leveraging extensive user behavior data. Despite their ability to act as lightweight domain experts, they struggle to perform versatile tasks such as providing explanations and engaging in conversations. On the other hand, large language models (LLMs) represent a significant step towards artificial general intelligence, showcasing remarkable capabilities in instruction comprehension, commonsense reasoning, and human interaction. However, LLMs lack the knowledge of domain-specific item catalogs and behavioral patterns, particularly in areas that diverge from general world knowledge, such as online e-commerce. Finetuning LLMs for each domain is neither economic nor efficient. In this paper, we bridge the gap between recommender models and LLMs, combining their respective strengths to create a versatile and interactive recommender system. We introduce an efficient framework called InteRecAgent, which employs LLMs as the brain and recommender models as tools. We first outline a minimal set of essential tools required to transform LLMs into InteRecAgent. We then propose an efficient workflow within InteRecAgent for task execution, incorporating key components such as a memory bus, dynamic demonstration-augmented task planning, and reflection. InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface through the integration of LLMs. Experimental results on several public datasets show that InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.

ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay

Training large language models (LLMs) as interactive agents for controlling graphical user interfaces (GUIs) presents a unique challenge to optimize long-horizon action sequences with multimodal feedback from complex environments. While recent works have advanced multi-turn reinforcement learning (RL) for reasoning and tool-using capabilities in LLMs, their application to GUI-based agents remains relatively underexplored due to the difficulty of sparse rewards, delayed feedback, and high rollout costs. In this paper, we investigate end-to-end policy optimization for vision-language-based GUI agents with the aim of improving performance on complex, long-horizon computer tasks. We propose Agentic Replay Policy Optimization (ARPO), an end-to-end RL approach that augments Group Relative Policy Optimization (GRPO) with a replay buffer to reuse the successful experience across training iterations. To further stabilize the training process, we propose a task selection strategy that filters tasks based on baseline agent performance, allowing the agent to focus on learning from informative interactions. Additionally, we compare ARPO with offline preference optimization approaches, highlighting the advantages of policy-based methods in GUI environments. Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results, establishing a new performance baseline for LLM-based GUI agents trained via reinforcement learning. Our findings underscore the effectiveness of reinforcement learning for training multi-turn, vision-language GUI agents capable of managing complex real-world UI interactions. Codes and models:https://github.com/dvlab-research/ARPO.git.

3D radio data visualisation in open science platforms for next-generation observatories

Next-generation telescopes will bring groundbreaking discoveries but they will also present new technological challenges. The Square Kilometre Array Observatory (SKAO) will be one of the most demanding scientific infrastructures, with a projected data output of 700 PB per year to be distributed to a network of SKA Regional Centres. Current tools are not fully suited to manage such massive data volumes, therefore, new research is required to transform science archives from data providers into service providers. In this paper we examine how a science archive can deliver advanced visualisation capabilities for the SKA science archive. In particular, we have conducted a thorough exploration of existing visualisation software for astronomy and other fields to identify tools capable of addressing Big Data requirements. Using selected technologies, we have developed a prototype archive that provides access to interactive visualisations of 3D radio data through web-based interfaces, adhering to International Virtual Observatory Alliance (IVOA) recommendations to favour interoperability and Open Science practices. In addition, we discuss how current IVOA recommendations support these visualisation capabilities and how they could be expanded. Our prototype archive includes a service to generate 3D models on the fly as a server operation, enabling remote visualisations in a flexible manner; for instance, a set of parameters can be used to customise the models and their visualisation. We have used SKA precursor and pathfinder data to test its usability and scalability, concluding that remote visualisation is a viable solution for handling high-volume data. However, our prototype is constrained by memory limitations, requiring techniques to reduce memory usage.

Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track

Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.

SWE-bench Multimodal: Do AI Systems Generalize to Visual Software Domains?

Autonomous systems for software engineering are now capable of fixing bugs and developing features. These systems are commonly evaluated on SWE-bench (Jimenez et al., 2024a), which assesses their ability to solve software issues from GitHub repositories. However, SWE-bench uses only Python repositories, with problem statements presented predominantly as text and lacking visual elements such as images. This limited coverage motivates our inquiry into how existing systems might perform on unrepresented software engineering domains (e.g., front-end, game development, DevOps), which use different programming languages and paradigms. Therefore, we propose SWE-bench Multimodal (SWE-bench M), to evaluate systems on their ability to fix bugs in visual, user-facing JavaScript software. SWE-bench M features 617 task instances collected from 17 JavaScript libraries used for web interface design, diagramming, data visualization, syntax highlighting, and interactive mapping. Each SWE-bench M task instance contains at least one image in its problem statement or unit tests. Our analysis finds that top-performing SWE-bench systems struggle with SWE-bench M, revealing limitations in visual problem-solving and cross-language generalization. Lastly, we show that SWE-agent's flexible language-agnostic features enable it to substantially outperform alternatives on SWE-bench M, resolving 12% of task instances compared to 6% for the next best system.

You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation

Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.