Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMaterial Anything: Generating Materials for Any 3D Object via Diffusion
We present Material Anything, a fully-automated, unified diffusion framework designed to generate physically-based materials for 3D objects. Unlike existing methods that rely on complex pipelines or case-specific optimizations, Material Anything offers a robust, end-to-end solution adaptable to objects under diverse lighting conditions. Our approach leverages a pre-trained image diffusion model, enhanced with a triple-head architecture and rendering loss to improve stability and material quality. Additionally, we introduce confidence masks as a dynamic switcher within the diffusion model, enabling it to effectively handle both textured and texture-less objects across varying lighting conditions. By employing a progressive material generation strategy guided by these confidence masks, along with a UV-space material refiner, our method ensures consistent, UV-ready material outputs. Extensive experiments demonstrate our approach outperforms existing methods across a wide range of object categories and lighting conditions.
Alchemist: Parametric Control of Material Properties with Diffusion Models
We propose a method to control material attributes of objects like roughness, metallic, albedo, and transparency in real images. Our method capitalizes on the generative prior of text-to-image models known for photorealism, employing a scalar value and instructions to alter low-level material properties. Addressing the lack of datasets with controlled material attributes, we generated an object-centric synthetic dataset with physically-based materials. Fine-tuning a modified pre-trained text-to-image model on this synthetic dataset enables us to edit material properties in real-world images while preserving all other attributes. We show the potential application of our model to material edited NeRFs.
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
We introduce Amazon Berkeley Objects (ABO), a new large-scale dataset designed to help bridge the gap between real and virtual 3D worlds. ABO contains product catalog images, metadata, and artist-created 3D models with complex geometries and physically-based materials that correspond to real, household objects. We derive challenging benchmarks that exploit the unique properties of ABO and measure the current limits of the state-of-the-art on three open problems for real-world 3D object understanding: single-view 3D reconstruction, material estimation, and cross-domain multi-view object retrieval.
Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators. Seed3D 1.0 is now available on https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?modelId=doubao-seed3d-1-0-250928&tab=Gen3D
Material Palette: Extraction of Materials from a Single Image
In this paper, we propose a method to extract physically-based rendering (PBR) materials from a single real-world image. We do so in two steps: first, we map regions of the image to material concepts using a diffusion model, which allows the sampling of texture images resembling each material in the scene. Second, we benefit from a separate network to decompose the generated textures into Spatially Varying BRDFs (SVBRDFs), providing us with materials ready to be used in rendering applications. Our approach builds on existing synthetic material libraries with SVBRDF ground truth, but also exploits a diffusion-generated RGB texture dataset to allow generalization to new samples using unsupervised domain adaptation (UDA). Our contributions are thoroughly evaluated on synthetic and real-world datasets. We further demonstrate the applicability of our method for editing 3D scenes with materials estimated from real photographs. The code and models will be made open-source. Project page: https://astra-vision.github.io/MaterialPalette/
LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
ControlMat: A Controlled Generative Approach to Material Capture
Material reconstruction from a photograph is a key component of 3D content creation democratization. We propose to formulate this ill-posed problem as a controlled synthesis one, leveraging the recent progress in generative deep networks. We present ControlMat, a method which, given a single photograph with uncontrolled illumination as input, conditions a diffusion model to generate plausible, tileable, high-resolution physically-based digital materials. We carefully analyze the behavior of diffusion models for multi-channel outputs, adapt the sampling process to fuse multi-scale information and introduce rolled diffusion to enable both tileability and patched diffusion for high-resolution outputs. Our generative approach further permits exploration of a variety of materials which could correspond to the input image, mitigating the unknown lighting conditions. We show that our approach outperforms recent inference and latent-space-optimization methods, and carefully validate our diffusion process design choices. Supplemental materials and additional details are available at: https://gvecchio.com/controlmat/.
TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting
Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multi-view images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, exhibiting better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
MUJICA: Reforming SISR Models for PBR Material Super-Resolution via Cross-Map Attention
Physically Based Rendering (PBR) materials are typically characterized by multiple 2D texture maps such as basecolor, normal, metallic, and roughness which encode spatially-varying bi-directional reflectance distribution function (SVBRDF) parameters to model surface reflectance properties and microfacet interactions. Upscaling SVBRDF material is valuable for modern 3D graphics applications. However, existing Single Image Super-Resolution (SISR) methods struggle with cross-map inconsistency, inadequate modeling of modality-specific features, and limited generalization due to data distribution shifts. In this work, we propose Multi-modal Upscaling Joint Inference via Cross-map Attention (MUJICA), a flexible adapter that reforms pre-trained Swin-transformer-based SISR models for PBR material super-resolution. MUJICA is seamlessly attached after the pre-trained and frozen SISR backbone. It leverages cross-map attention to fuse features while preserving remarkable reconstruction ability of the pre-trained SISR model. Applied to SISR models such as SwinIR, DRCT, and HMANet, MUJICA improves PSNR, SSIM, and LPIPS scores while preserving cross-map consistency. Experiments demonstrate that MUJICA enables efficient training even with limited resources and delivers state-of-the-art performance on PBR material datasets.
DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
2D diffusion model, which often contains unwanted baked-in shading effects and results in unrealistic rendering effects in the downstream applications. Generating Physically Based Rendering (PBR) materials instead of just RGB textures would be a promising solution. However, directly distilling the PBR material parameters from 2D diffusion models still suffers from incorrect material decomposition, such as baked-in shading effects in albedo. We introduce DreamMat, an innovative approach to resolve the aforementioned problem, to generate high-quality PBR materials from text descriptions. We find out that the main reason for the incorrect material distillation is that large-scale 2D diffusion models are only trained to generate final shading colors, resulting in insufficient constraints on material decomposition during distillation. To tackle this problem, we first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition. Then, by applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo. Extensive experiments demonstrate that the materials produced through our methods exhibit greater visual appeal to users and achieve significantly superior rendering quality compared to baseline methods, which are preferable for downstream tasks such as game and film production.
SViM3D: Stable Video Material Diffusion for Single Image 3D Generation
We present Stable Video Materials 3D (SViM3D), a framework to predict multi-view consistent physically based rendering (PBR) materials, given a single image. Recently, video diffusion models have been successfully used to reconstruct 3D objects from a single image efficiently. However, reflectance is still represented by simple material models or needs to be estimated in additional steps to enable relighting and controlled appearance edits. We extend a latent video diffusion model to output spatially varying PBR parameters and surface normals jointly with each generated view based on explicit camera control. This unique setup allows for relighting and generating a 3D asset using our model as neural prior. We introduce various mechanisms to this pipeline that improve quality in this ill-posed setting. We show state-of-the-art relighting and novel view synthesis performance on multiple object-centric datasets. Our method generalizes to diverse inputs, enabling the generation of relightable 3D assets useful in AR/VR, movies, games and other visual media.
DualMat: PBR Material Estimation via Coherent Dual-Path Diffusion
We present DualMat, a novel dual-path diffusion framework for estimating Physically Based Rendering (PBR) materials from single images under complex lighting conditions. Our approach operates in two distinct latent spaces: an albedo-optimized path leveraging pretrained visual knowledge through RGB latent space, and a material-specialized path operating in a compact latent space designed for precise metallic and roughness estimation. To ensure coherent predictions between the albedo-optimized and material-specialized paths, we introduce feature distillation during training. We employ rectified flow to enhance efficiency by reducing inference steps while maintaining quality. Our framework extends to high-resolution and multi-view inputs through patch-based estimation and cross-view attention, enabling seamless integration into image-to-3D pipelines. DualMat achieves state-of-the-art performance on both Objaverse and real-world data, significantly outperforming existing methods with up to 28% improvement in albedo estimation and 39% reduction in metallic-roughness prediction errors.
TexVerse: A Universe of 3D Objects with High-Resolution Textures
We introduce TexVerse, a large-scale 3D dataset featuring high-resolution textures. While recent advances in large-scale 3D datasets have enhanced high-resolution geometry generation, creating high-resolution textures end-to-end remains underexplored due to the lack of suitable datasets. TexVerse fills this gap with a curated collection of over 858K unique high-resolution 3D models sourced from Sketchfab, including more than 158K models with physically based rendering (PBR) materials. Each model encompasses all of its high-resolution variants, bringing the total to 1.6M 3D instances. TexVerse also includes specialized subsets: TexVerse-Skeleton, with 69K rigged models, and TexVerse-Animation, with 54K animated models, both preserving original skeleton and animation data uploaded by the user. We also provide detailed model annotations describing overall characteristics, structural components, and intricate features. TexVerse offers a high-quality data resource with wide-ranging potential applications in texture synthesis, PBR material development, animation, and various 3D vision and graphics tasks.
IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing
We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars including geometry, albedo, material, and environment lighting from only monocular videos. Recent advancements in human-based neural rendering have enabled high-quality geometry and appearance reconstruction of clothed humans from just monocular videos. However, these methods bake intrinsic properties such as albedo, material, and environment lighting into a single entangled neural representation. On the other hand, only a handful of works tackle the problem of estimating geometry and disentangled appearance properties of clothed humans from monocular videos. They usually achieve limited quality and disentanglement due to approximations of secondary shading effects via learned MLPs. In this work, we propose to model secondary shading effects explicitly via Monte-Carlo ray tracing. We model the rendering process of clothed humans as a volumetric scattering process, and combine ray tracing with body articulation. Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video, without requiring supervised pre-training using ground truth materials. Furthermore, since we explicitly model the volumetric scattering process and ray tracing, our model naturally generalizes to novel poses, enabling animation of the reconstructed avatar in novel lighting conditions.
Light Sampling Field and BRDF Representation for Physically-based Neural Rendering
Physically-based rendering (PBR) is key for immersive rendering effects used widely in the industry to showcase detailed realistic scenes from computer graphics assets. A well-known caveat is that producing the same is computationally heavy and relies on complex capture devices. Inspired by the success in quality and efficiency of recent volumetric neural rendering, we want to develop a physically-based neural shader to eliminate device dependency and significantly boost performance. However, no existing lighting and material models in the current neural rendering approaches can accurately represent the comprehensive lighting models and BRDFs properties required by the PBR process. Thus, this paper proposes a novel lighting representation that models direct and indirect light locally through a light sampling strategy in a learned light sampling field. We also propose BRDF models to separately represent surface/subsurface scattering details to enable complex objects such as translucent material (i.e., skin, jade). We then implement our proposed representations with an end-to-end physically-based neural face skin shader, which takes a standard face asset (i.e., geometry, albedo map, and normal map) and an HDRI for illumination as inputs and generates a photo-realistic rendering as output. Extensive experiments showcase the quality and efficiency of our PBR face skin shader, indicating the effectiveness of our proposed lighting and material representations.
PRM: Photometric Stereo based Large Reconstruction Model
We propose PRM, a novel photometric stereo based large reconstruction model to reconstruct high-quality meshes with fine-grained local details. Unlike previous large reconstruction models that prepare images under fixed and simple lighting as both input and supervision, PRM renders photometric stereo images by varying materials and lighting for the purposes, which not only improves the precise local details by providing rich photometric cues but also increases the model robustness to variations in the appearance of input images. To offer enhanced flexibility of images rendering, we incorporate a real-time physically-based rendering (PBR) method and mesh rasterization for online images rendering. Moreover, in employing an explicit mesh as our 3D representation, PRM ensures the application of differentiable PBR, which supports the utilization of multiple photometric supervisions and better models the specular color for high-quality geometry optimization. Our PRM leverages photometric stereo images to achieve high-quality reconstructions with fine-grained local details, even amidst sophisticated image appearances. Extensive experiments demonstrate that PRM significantly outperforms other models.
Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
RRM: Relightable assets using Radiance guided Material extraction
Synthesizing NeRFs under arbitrary lighting has become a seminal problem in the last few years. Recent efforts tackle the problem via the extraction of physically-based parameters that can then be rendered under arbitrary lighting, but they are limited in the range of scenes they can handle, usually mishandling glossy scenes. We propose RRM, a method that can extract the materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects. Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid. We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images
We present MatDecompSDF, a novel framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images. The core challenge of inverse rendering lies in the ill-posed disentanglement of geometry, materials, and illumination from 2D observations. Our method addresses this by jointly optimizing three neural components: a neural Signed Distance Function (SDF) to represent complex geometry, a spatially-varying neural field for predicting PBR material parameters (albedo, roughness, metallic), and an MLP-based model for capturing unknown environmental lighting. The key to our approach is a physically-based differentiable rendering layer that connects these 3D properties to the input images, allowing for end-to-end optimization. We introduce a set of carefully designed physical priors and geometric regularizations, including a material smoothness loss and an Eikonal loss, to effectively constrain the problem and achieve robust decomposition. Extensive experiments on both synthetic and real-world datasets (e.g., DTU) demonstrate that MatDecompSDF surpasses state-of-the-art methods in geometric accuracy, material fidelity, and novel view synthesis. Crucially, our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines, validating its practical utility for digital content creation.
FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Clothing Images
We introduce FabricDiffusion, a method for transferring fabric textures from a single clothing image to 3D garments of arbitrary shapes. Existing approaches typically synthesize textures on the garment surface through 2D-to-3D texture mapping or depth-aware inpainting via generative models. Unfortunately, these methods often struggle to capture and preserve texture details, particularly due to challenging occlusions, distortions, or poses in the input image. Inspired by the observation that in the fashion industry, most garments are constructed by stitching sewing patterns with flat, repeatable textures, we cast the task of clothing texture transfer as extracting distortion-free, tileable texture materials that are subsequently mapped onto the UV space of the garment. Building upon this insight, we train a denoising diffusion model with a large-scale synthetic dataset to rectify distortions in the input texture image. This process yields a flat texture map that enables a tight coupling with existing Physically-Based Rendering (PBR) material generation pipelines, allowing for realistic relighting of the garment under various lighting conditions. We show that FabricDiffusion can transfer various features from a single clothing image including texture patterns, material properties, and detailed prints and logos. Extensive experiments demonstrate that our model significantly outperforms state-to-the-art methods on both synthetic data and real-world, in-the-wild clothing images while generalizing to unseen textures and garment shapes.
Collaborative Control for Geometry-Conditioned PBR Image Generation
Current 3D content generation builds on generative models that output RGB images. Modern graphics pipelines, however, require physically-based rendering (PBR) material properties. We propose to model the PBR image distribution directly to avoid photometric inaccuracies in RGB generation and the inherent ambiguity in extracting PBR from RGB. Existing paradigms for cross-modal finetuning are not suited for PBR generation due to a lack of data and the high dimensionality of the output modalities: we overcome both challenges by retaining a frozen RGB model and tightly linking a newly trained PBR model using a novel cross-network communication paradigm. As the base RGB model is fully frozen, the proposed method does not risk catastrophic forgetting during finetuning and remains compatible with techniques such as IPAdapter pretrained for the base RGB model. We validate our design choices, robustness to data sparsity, and compare against existing paradigms with an extensive experimental section.
ZeroScene: A Zero-Shot Framework for 3D Scene Generation from a Single Image and Controllable Texture Editing
In the field of 3D content generation, single image scene reconstruction methods still struggle to simultaneously ensure the quality of individual assets and the coherence of the overall scene in complex environments, while texture editing techniques often fail to maintain both local continuity and multi-view consistency. In this paper, we propose a novel system ZeroScene, which leverages the prior knowledge of large vision models to accomplish both single image-to-3D scene reconstruction and texture editing in a zero-shot manner. ZeroScene extracts object-level 2D segmentation and depth information from input images to infer spatial relationships within the scene. It then jointly optimizes 3D and 2D projection losses of the point cloud to update object poses for precise scene alignment, ultimately constructing a coherent and complete 3D scene that encompasses both foreground and background. Moreover, ZeroScene supports texture editing of objects in the scene. By imposing constraints on the diffusion model and introducing a mask-guided progressive image generation strategy, we effectively maintain texture consistency across multiple viewpoints and further enhance the realism of rendered results through Physically Based Rendering (PBR) material estimation. Experimental results demonstrate that our framework not only ensures the geometric and appearance accuracy of generated assets, but also faithfully reconstructs scene layouts and produces highly detailed textures that closely align with text prompts.
Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting
We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.
EndoPBR: Material and Lighting Estimation for Photorealistic Surgical Simulations via Physically-based Rendering
The lack of labeled datasets in 3D vision for surgical scenes inhibits the development of robust 3D reconstruction algorithms in the medical domain. Despite the popularity of Neural Radiance Fields and 3D Gaussian Splatting in the general computer vision community, these systems have yet to find consistent success in surgical scenes due to challenges such as non-stationary lighting and non-Lambertian surfaces. As a result, the need for labeled surgical datasets continues to grow. In this work, we introduce a differentiable rendering framework for material and lighting estimation from endoscopic images and known geometry. Compared to previous approaches that model lighting and material jointly as radiance, we explicitly disentangle these scene properties for robust and photorealistic novel view synthesis. To disambiguate the training process, we formulate domain-specific properties inherent in surgical scenes. Specifically, we model the scene lighting as a simple spotlight and material properties as a bidirectional reflectance distribution function, parameterized by a neural network. By grounding color predictions in the rendering equation, we can generate photorealistic images at arbitrary camera poses. We evaluate our method with various sequences from the Colonoscopy 3D Video Dataset and show that our method produces competitive novel view synthesis results compared with other approaches. Furthermore, we demonstrate that synthetic data can be used to develop 3D vision algorithms by finetuning a depth estimation model with our rendered outputs. Overall, we see that the depth estimation performance is on par with fine-tuning with the original real images.
Paint-it: Text-to-Texture Synthesis via Deep Convolutional Texture Map Optimization and Physically-Based Rendering
We present Paint-it, a text-driven high-fidelity texture map synthesis method for 3D meshes via neural re-parameterized texture optimization. Paint-it synthesizes texture maps from a text description by synthesis-through-optimization, exploiting the Score-Distillation Sampling (SDS). We observe that directly applying SDS yields undesirable texture quality due to its noisy gradients. We reveal the importance of texture parameterization when using SDS. Specifically, we propose Deep Convolutional Physically-Based Rendering (DC-PBR) parameterization, which re-parameterizes the physically-based rendering (PBR) texture maps with randomly initialized convolution-based neural kernels, instead of a standard pixel-based parameterization. We show that DC-PBR inherently schedules the optimization curriculum according to texture frequency and naturally filters out the noisy signals from SDS. In experiments, Paint-it obtains remarkable quality PBR texture maps within 15 min., given only a text description. We demonstrate the generalizability and practicality of Paint-it by synthesizing high-quality texture maps for large-scale mesh datasets and showing test-time applications such as relighting and material control using a popular graphics engine. Project page: https://kim-youwang.github.io/paint-it
MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo
Photometric stereo typically demands intricate data acquisition setups involving multiple light sources to recover surface normals accurately. In this paper, we propose MERLiN, an attention-based hourglass network that integrates single image-based inverse rendering and relighting within a single unified framework. We evaluate the performance of photometric stereo methods using these relit images and demonstrate how they can circumvent the underlying challenge of complex data acquisition. Our physically-based model is trained on a large synthetic dataset containing complex shapes with spatially varying BRDF and is designed to handle indirect illumination effects to improve material reconstruction and relighting. Through extensive qualitative and quantitative evaluation, we demonstrate that the proposed framework generalizes well to real-world images, achieving high-quality shape, material estimation, and relighting. We assess these synthetically relit images over photometric stereo benchmark methods for their physical correctness and resulting normal estimation accuracy, paving the way towards single-shot photometric stereo through physically-based relighting. This work allows us to address the single image-based inverse rendering problem holistically, applying well to both synthetic and real data and taking a step towards mitigating the challenge of data acquisition in photometric stereo.
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene geometry, material, and lighting from image observations in a physically-based manner. The proposed incident light and inter-reflection framework can be easily applied to other NeRF systems. We show that our method can not only decompose the outgoing radiance into incident lights and surface materials, but also serve as a surface refinement module that further improves the reconstruction detail of the neural surface. We demonstrate on several datasets that the proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models
Understanding and modeling lighting effects are fundamental tasks in computer vision and graphics. Classic physically-based rendering (PBR) accurately simulates the light transport, but relies on precise scene representations--explicit 3D geometry, high-quality material properties, and lighting conditions--that are often impractical to obtain in real-world scenarios. Therefore, we introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering within a holistic framework. Leveraging powerful video diffusion model priors, the inverse rendering model accurately estimates G-buffers from real-world videos, providing an interface for image editing tasks, and training data for the rendering model. Conversely, our rendering model generates photorealistic images from G-buffers without explicit light transport simulation. Experiments demonstrate that DiffusionRenderer effectively approximates inverse and forwards rendering, consistently outperforming the state-of-the-art. Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
NeRD: Neural Reflectance Decomposition from Image Collections
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
In the realm of digital creativity, our potential to craft intricate 3D worlds from imagination is often hampered by the limitations of existing digital tools, which demand extensive expertise and efforts. To narrow this disparity, we introduce CLAY, a 3D geometry and material generator designed to effortlessly transform human imagination into intricate 3D digital structures. CLAY supports classic text or image inputs as well as 3D-aware controls from diverse primitives (multi-view images, voxels, bounding boxes, point clouds, implicit representations, etc). At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT), to extract rich 3D priors directly from a diverse range of 3D geometries. Specifically, it adopts neural fields to represent continuous and complete surfaces and uses a geometry generative module with pure transformer blocks in latent space. We present a progressive training scheme to train CLAY on an ultra large 3D model dataset obtained through a carefully designed processing pipeline, resulting in a 3D native geometry generator with 1.5 billion parameters. For appearance generation, CLAY sets out to produce physically-based rendering (PBR) textures by employing a multi-view material diffusion model that can generate 2K resolution textures with diffuse, roughness, and metallic modalities. We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details. Even first time users can easily use CLAY to bring their vivid 3D imaginations to life, unleashing unlimited creativity.
PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations
Modeling and rendering photorealistic avatars is of crucial importance in many applications. Existing methods that build a 3D avatar from visual observations, however, struggle to reconstruct clothed humans. We introduce PhysAvatar, a novel framework that combines inverse rendering with inverse physics to automatically estimate the shape and appearance of a human from multi-view video data along with the physical parameters of the fabric of their clothes. For this purpose, we adopt a mesh-aligned 4D Gaussian technique for spatio-temporal mesh tracking as well as a physically based inverse renderer to estimate the intrinsic material properties. PhysAvatar integrates a physics simulator to estimate the physical parameters of the garments using gradient-based optimization in a principled manner. These novel capabilities enable PhysAvatar to create high-quality novel-view renderings of avatars dressed in loose-fitting clothes under motions and lighting conditions not seen in the training data. This marks a significant advancement towards modeling photorealistic digital humans using physically based inverse rendering with physics in the loop. Our project website is at: https://qingqing-zhao.github.io/PhysAvatar
StableMaterials: Enhancing Diversity in Material Generation via Semi-Supervised Learning
We introduce StableMaterials, a novel approach for generating photorealistic physical-based rendering (PBR) materials that integrate semi-supervised learning with Latent Diffusion Models (LDMs). Our method employs adversarial training to distill knowledge from existing large-scale image generation models, minimizing the reliance on annotated data and enhancing the diversity in generation. This distillation approach aligns the distribution of the generated materials with that of image textures from an SDXL model, enabling the generation of novel materials that are not present in the initial training dataset. Furthermore, we employ a diffusion-based refiner model to improve the visual quality of the samples and achieve high-resolution generation. Finally, we distill a latent consistency model for fast generation in just four steps and propose a new tileability technique that removes visual artifacts typically associated with fewer diffusion steps. We detail the architecture and training process of StableMaterials, the integration of semi-supervised training within existing LDM frameworks and show the advantages of our approach. Comparative evaluations with state-of-the-art methods show the effectiveness of StableMaterials, highlighting its potential applications in computer graphics and beyond. StableMaterials is publicly available at https://gvecchio.com/stablematerials.
MatterGen: a generative model for inorganic materials design
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion
In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
Multimodal Learning for Materials
Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials, but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e., relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.
VoMP: Predicting Volumetric Mechanical Property Fields
Physical simulation relies on spatially-varying mechanical properties, often laboriously hand-crafted. VoMP is a feed-forward method trained to predict Young's modulus (E), Poisson's ratio (nu), and density (rho) throughout the volume of 3D objects, in any representation that can be rendered and voxelized. VoMP aggregates per-voxel multi-view features and passes them to our trained Geometry Transformer to predict per-voxel material latent codes. These latents reside on a manifold of physically plausible materials, which we learn from a real-world dataset, guaranteeing the validity of decoded per-voxel materials. To obtain object-level training data, we propose an annotation pipeline combining knowledge from segmented 3D datasets, material databases, and a vision-language model, along with a new benchmark. Experiments show that VoMP estimates accurate volumetric properties, far outperforming prior art in accuracy and speed.
PhysX: Physical-Grounded 3D Asset Generation
3D modeling is moving from virtual to physical. Existing 3D generation primarily emphasizes geometries and textures while neglecting physical-grounded modeling. Consequently, despite the rapid development of 3D generative models, the synthesized 3D assets often overlook rich and important physical properties, hampering their real-world application in physical domains like simulation and embodied AI. As an initial attempt to address this challenge, we propose PhysX, an end-to-end paradigm for physical-grounded 3D asset generation. 1) To bridge the critical gap in physics-annotated 3D datasets, we present PhysXNet - the first physics-grounded 3D dataset systematically annotated across five foundational dimensions: absolute scale, material, affordance, kinematics, and function description. In particular, we devise a scalable human-in-the-loop annotation pipeline based on vision-language models, which enables efficient creation of physics-first assets from raw 3D assets.2) Furthermore, we propose PhysXGen, a feed-forward framework for physics-grounded image-to-3D asset generation, injecting physical knowledge into the pre-trained 3D structural space. Specifically, PhysXGen employs a dual-branch architecture to explicitly model the latent correlations between 3D structures and physical properties, thereby producing 3D assets with plausible physical predictions while preserving the native geometry quality. Extensive experiments validate the superior performance and promising generalization capability of our framework. All the code, data, and models will be released to facilitate future research in generative physical AI.
Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
OmniPhysGS: 3D Constitutive Gaussians for General Physics-Based Dynamics Generation
Recently, significant advancements have been made in the reconstruction and generation of 3D assets, including static cases and those with physical interactions. To recover the physical properties of 3D assets, existing methods typically assume that all materials belong to a specific predefined category (e.g., elasticity). However, such assumptions ignore the complex composition of multiple heterogeneous objects in real scenarios and tend to render less physically plausible animation given a wider range of objects. We propose OmniPhysGS for synthesizing a physics-based 3D dynamic scene composed of more general objects. A key design of OmniPhysGS is treating each 3D asset as a collection of constitutive 3D Gaussians. For each Gaussian, its physical material is represented by an ensemble of 12 physical domain-expert sub-models (rubber, metal, honey, water, etc.), which greatly enhances the flexibility of the proposed model. In the implementation, we define a scene by user-specified prompts and supervise the estimation of material weighting factors via a pretrained video diffusion model. Comprehensive experiments demonstrate that OmniPhysGS achieves more general and realistic physical dynamics across a broader spectrum of materials, including elastic, viscoelastic, plastic, and fluid substances, as well as interactions between different materials. Our method surpasses existing methods by approximately 3% to 16% in metrics of visual quality and text alignment.
Inpaint4Drag: Repurposing Inpainting Models for Drag-Based Image Editing via Bidirectional Warping
Drag-based image editing has emerged as a powerful paradigm for intuitive image manipulation. However, existing approaches predominantly rely on manipulating the latent space of generative models, leading to limited precision, delayed feedback, and model-specific constraints. Accordingly, we present Inpaint4Drag, a novel framework that decomposes drag-based editing into pixel-space bidirectional warping and image inpainting. Inspired by elastic object deformation in the physical world, we treat image regions as deformable materials that maintain natural shape under user manipulation. Our method achieves real-time warping previews (0.01s) and efficient inpainting (0.3s) at 512x512 resolution, significantly improving the interaction experience compared to existing methods that require minutes per edit. By transforming drag inputs directly into standard inpainting formats, our approach serves as a universal adapter for any inpainting model without architecture modification, automatically inheriting all future improvements in inpainting technology. Extensive experiments demonstrate that our method achieves superior visual quality and precise control while maintaining real-time performance. Project page: https://visual-ai.github.io/inpaint4drag/
1.5 million materials narratives generated by chatbots
The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors
Dynamic 3D interaction has been attracting a lot of attention recently. However, creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, which requires manually assigning precise physical properties to the object or the simulated results would become unnatural. Another solution is to learn the deformation of 3D objects with the distillation of video generative models, which, however, tends to produce 3D videos with small and discontinuous motions due to the inappropriate extraction and application of physics priors. In this work, to combine the strengths and complementing shortcomings of the above two solutions, we propose to learn the physical properties of a material field with video diffusion priors, and then utilize a physics-based Material-Point-Method (MPM) simulator to generate 4D content with realistic motions. In particular, we propose motion distillation sampling to emphasize video motion information during distillation. In addition, to facilitate the optimization, we further propose a KAN-based material field with frame boosting. Experimental results demonstrate that our method enjoys more realistic motions than state-of-the-arts do.
MODNet -- accurate and interpretable property predictions for limited materials datasets by feature selection and joint-learning
In order to make accurate predictions of material properties, current machine-learning approaches generally require large amounts of data, which are often not available in practice. In this work, an all-round framework is presented which relies on a feedforward neural network, the selection of physically-meaningful features and, when applicable, joint-learning. Next to being faster in terms of training time, this approach is shown to outperform current graph-network models on small datasets. In particular, the vibrational entropy at 305 K of crystals is predicted with a mean absolute test error of 0.009 meV/K/atom (four times lower than previous studies). Furthermore, joint-learning reduces the test error compared to single-target learning and enables the prediction of multiple properties at once, such as temperature functions. Finally, the selection algorithm highlights the most important features and thus helps understanding the underlying physics.
Scalable Diffusion for Materials Generation
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation
We present PhysGen, a novel image-to-video generation method that converts a single image and an input condition (e.g., force and torque applied to an object in the image) to produce a realistic, physically plausible, and temporally consistent video. Our key insight is to integrate model-based physical simulation with a data-driven video generation process, enabling plausible image-space dynamics. At the heart of our system are three core components: (i) an image understanding module that effectively captures the geometry, materials, and physical parameters of the image; (ii) an image-space dynamics simulation model that utilizes rigid-body physics and inferred parameters to simulate realistic behaviors; and (iii) an image-based rendering and refinement module that leverages generative video diffusion to produce realistic video footage featuring the simulated motion. The resulting videos are realistic in both physics and appearance and are even precisely controllable, showcasing superior results over existing data-driven image-to-video generation works through quantitative comparison and comprehensive user study. PhysGen's resulting videos can be used for various downstream applications, such as turning an image into a realistic animation or allowing users to interact with the image and create various dynamics. Project page: https://stevenlsw.github.io/physgen/
MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.
Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
GaussianProperty: Integrating Physical Properties to 3D Gaussians with LMMs
Estimating physical properties for visual data is a crucial task in computer vision, graphics, and robotics, underpinning applications such as augmented reality, physical simulation, and robotic grasping. However, this area remains under-explored due to the inherent ambiguities in physical property estimation. To address these challenges, we introduce GaussianProperty, a training-free framework that assigns physical properties of materials to 3D Gaussians. Specifically, we integrate the segmentation capability of SAM with the recognition capability of GPT-4V(ision) to formulate a global-local physical property reasoning module for 2D images. Then we project the physical properties from multi-view 2D images to 3D Gaussians using a voting strategy. We demonstrate that 3D Gaussians with physical property annotations enable applications in physics-based dynamic simulation and robotic grasping. For physics-based dynamic simulation, we leverage the Material Point Method (MPM) for realistic dynamic simulation. For robot grasping, we develop a grasping force prediction strategy that estimates a safe force range required for object grasping based on the estimated physical properties. Extensive experiments on material segmentation, physics-based dynamic simulation, and robotic grasping validate the effectiveness of our proposed method, highlighting its crucial role in understanding physical properties from visual data. Online demo, code, more cases and annotated datasets are available on https://Gaussian-Property.github.io{this https URL}.
Crystal-GFN: sampling crystals with desirable properties and constraints
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation
Realistic object interactions are crucial for creating immersive virtual experiences, yet synthesizing realistic 3D object dynamics in response to novel interactions remains a significant challenge. Unlike unconditional or text-conditioned dynamics generation, action-conditioned dynamics requires perceiving the physical material properties of objects and grounding the 3D motion prediction on these properties, such as object stiffness. However, estimating physical material properties is an open problem due to the lack of material ground-truth data, as measuring these properties for real objects is highly difficult. We present PhysDreamer, a physics-based approach that endows static 3D objects with interactive dynamics by leveraging the object dynamics priors learned by video generation models. By distilling these priors, PhysDreamer enables the synthesis of realistic object responses to novel interactions, such as external forces or agent manipulations. We demonstrate our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study. PhysDreamer takes a step towards more engaging and realistic virtual experiences by enabling static 3D objects to dynamically respond to interactive stimuli in a physically plausible manner. See our project page at https://physdreamer.github.io/.
SOPHY: Generating Simulation-Ready Objects with Physical Materials
We present SOPHY, a generative model for 3D physics-aware shape synthesis. Unlike existing 3D generative models that focus solely on static geometry or 4D models that produce physics-agnostic animations, our approach jointly synthesizes shape, texture, and material properties related to physics-grounded dynamics, making the generated objects ready for simulations and interactive, dynamic environments. To train our model, we introduce a dataset of 3D objects annotated with detailed physical material attributes, along with an annotation pipeline for efficient material annotation. Our method enables applications such as text-driven generation of interactive, physics-aware 3D objects and single-image reconstruction of physically plausible shapes. Furthermore, our experiments demonstrate that jointly modeling shape and material properties enhances the realism and fidelity of generated shapes, improving performance on generative geometry evaluation metrics.
Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Physically Compatible 3D Object Modeling from a Single Image
We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. Our optimization framework addresses this by embedding physical compatibility into the reconstruction process. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors. Evaluations on a dataset collected from Objaverse demonstrate that our framework consistently enhances the physical realism of 3D models over existing methods. The utility of our framework extends to practical applications in dynamic simulations and 3D printing, where adherence to physical compatibility is paramount.
MaRI: Material Retrieval Integration across Domains
Accurate material retrieval is critical for creating realistic 3D assets. Existing methods rely on datasets that capture shape-invariant and lighting-varied representations of materials, which are scarce and face challenges due to limited diversity and inadequate real-world generalization. Most current approaches adopt traditional image search techniques. They fall short in capturing the unique properties of material spaces, leading to suboptimal performance in retrieval tasks. Addressing these challenges, we introduce MaRI, a framework designed to bridge the feature space gap between synthetic and real-world materials. MaRI constructs a shared embedding space that harmonizes visual and material attributes through a contrastive learning strategy by jointly training an image and a material encoder, bringing similar materials and images closer while separating dissimilar pairs within the feature space. To support this, we construct a comprehensive dataset comprising high-quality synthetic materials rendered with controlled shape variations and diverse lighting conditions, along with real-world materials processed and standardized using material transfer techniques. Extensive experiments demonstrate the superior performance, accuracy, and generalization capabilities of MaRI across diverse and complex material retrieval tasks, outperforming existing methods.
MoMa: A Modular Deep Learning Framework for Material Property Prediction
Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.
NeuMaDiff: Neural Material Synthesis via Hyperdiffusion
High-quality material synthesis is essential for replicating complex surface properties to create realistic digital scenes. However, existing methods often suffer from inefficiencies in time and memory, require domain expertise, or demand extensive training data, with high-dimensional material data further constraining performance. Additionally, most approaches lack multi-modal guidance capabilities and standardized evaluation metrics, limiting control and comparability in synthesis tasks. To address these limitations, we propose NeuMaDiff, a novel neural material synthesis framework utilizing hyperdiffusion. Our method employs neural fields as a low-dimensional representation and incorporates a multi-modal conditional hyperdiffusion model to learn the distribution over material weights. This enables flexible guidance through inputs such as material type, text descriptions, or reference images, providing greater control over synthesis. To support future research, we contribute two new material datasets and introduce two BRDF distributional metrics for more rigorous evaluation. We demonstrate the effectiveness of NeuMaDiff through extensive experiments, including a novel statistics-based constrained synthesis approach, which enables the generation of materials of desired categories.
Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation
Generative machine learning methods, such as diffusion models and flow matching, have shown great potential in modeling complex system behaviors and building efficient surrogate models. However, these methods typically learn the underlying physics implicitly from data. We propose Physics-Based Flow Matching (PBFM), a novel generative framework that explicitly embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective. We also introduce temporal unrolling at training time that improves the accuracy of the final, noise-free sample prediction. Our method jointly minimizes the flow matching loss and the physics-based residual loss without requiring hyperparameter tuning of their relative weights. Additionally, we analyze the role of the minimum noise level, sigma_{min}, in the context of physical constraints and evaluate a stochastic sampling strategy that helps to reduce physical residuals. Through extensive benchmarks on three representative PDE problems, we show that our approach yields up to an 8times more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy. PBFM thus provides a principled and efficient framework for surrogate modeling, uncertainty quantification, and accelerated simulation in physics and engineering applications.
JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
Training-Free Constrained Generation With Stable Diffusion Models
Stable diffusion models represent the state-of-the-art in data synthesis across diverse domains and hold transformative potential for applications in science and engineering, e.g., by facilitating the discovery of novel solutions and simulating systems that are computationally intractable to model explicitly. While there is increasing effort to incorporate physics-based constraints into generative models, existing techniques are either limited in their applicability to latent diffusion frameworks or lack the capability to strictly enforce domain-specific constraints. To address this limitation this paper proposes a novel integration of stable diffusion models with constrained optimization frameworks, enabling the generation of outputs satisfying stringent physical and functional requirements. The effectiveness of this approach is demonstrated through material design experiments requiring adherence to precise morphometric properties, challenging inverse design tasks involving the generation of materials inducing specific stress-strain responses, and copyright-constrained content generation tasks. All code has been released at https://github.com/RAISELab-atUVA/Constrained-Stable-Diffusion.
Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
FlowMM: Generating Materials with Riemannian Flow Matching
Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods.
Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning
Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.
PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS^2)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning
The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.
AtomGPT: Atomistic Generative Pre-trained Transformer for Forward and Inverse Materials Design
Large language models (LLMs) such as generative pretrained transformers (GPTs) have shown potential for various commercial applications, but their applicability for materials design remains underexplored. In this article, we introduce AtomGPT, a model specifically developed for materials design based on transformer architectures, to demonstrate the capability for both atomistic property prediction and structure generation. We show that a combination of chemical and structural text descriptions can efficiently predict material properties with accuracy comparable to graph neural network models, including formation energies, electronic bandgaps from two different methods and superconducting transition temperatures. Furthermore, we demonstrate that AtomGPT can generate atomic structures for tasks such as designing new superconductors, with the predictions validated through density functional theory calculations. This work paves the way for leveraging LLMs in forward and inverse materials design, offering an efficient approach to the discovery and optimization of materials.
WISA: World Simulator Assistant for Physics-Aware Text-to-Video Generation
Recent rapid advancements in text-to-video (T2V) generation, such as SoRA and Kling, have shown great potential for building world simulators. However, current T2V models struggle to grasp abstract physical principles and generate videos that adhere to physical laws. This challenge arises primarily from a lack of clear guidance on physical information due to a significant gap between abstract physical principles and generation models. To this end, we introduce the World Simulator Assistant (WISA), an effective framework for decomposing and incorporating physical principles into T2V models. Specifically, WISA decomposes physical principles into textual physical descriptions, qualitative physical categories, and quantitative physical properties. To effectively embed these physical attributes into the generation process, WISA incorporates several key designs, including Mixture-of-Physical-Experts Attention (MoPA) and a Physical Classifier, enhancing the model's physics awareness. Furthermore, most existing datasets feature videos where physical phenomena are either weakly represented or entangled with multiple co-occurring processes, limiting their suitability as dedicated resources for learning explicit physical principles. We propose a novel video dataset, WISA-32K, collected based on qualitative physical categories. It consists of 32,000 videos, representing 17 physical laws across three domains of physics: dynamics, thermodynamics, and optics. Experimental results demonstrate that WISA can effectively enhance the compatibility of T2V models with real-world physical laws, achieving a considerable improvement on the VideoPhy benchmark. The visual exhibitions of WISA and WISA-32K are available in the https://360cvgroup.github.io/WISA/.
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.
Pixie: Fast and Generalizable Supervised Learning of 3D Physics from Pixels
Inferring the physical properties of 3D scenes from visual information is a critical yet challenging task for creating interactive and realistic virtual worlds. While humans intuitively grasp material characteristics such as elasticity or stiffness, existing methods often rely on slow, per-scene optimization, limiting their generalizability and application. To address this problem, we introduce PIXIE, a novel method that trains a generalizable neural network to predict physical properties across multiple scenes from 3D visual features purely using supervised losses. Once trained, our feed-forward network can perform fast inference of plausible material fields, which coupled with a learned static scene representation like Gaussian Splatting enables realistic physics simulation under external forces. To facilitate this research, we also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets and physic material annotations. Extensive evaluations demonstrate that PIXIE is about 1.46-4.39x better and orders of magnitude faster than test-time optimization methods. By leveraging pretrained visual features like CLIP, our method can also zero-shot generalize to real-world scenes despite only ever been trained on synthetic data. https://pixie-3d.github.io/
UBSoft: A Simulation Platform for Robotic Skill Learning in Unbounded Soft Environments
It is desired to equip robots with the capability of interacting with various soft materials as they are ubiquitous in the real world. While physics simulations are one of the predominant methods for data collection and robot training, simulating soft materials presents considerable challenges. Specifically, it is significantly more costly than simulating rigid objects in terms of simulation speed and storage requirements. These limitations typically restrict the scope of studies on soft materials to small and bounded areas, thereby hindering the learning of skills in broader spaces. To address this issue, we introduce UBSoft, a new simulation platform designed to support unbounded soft environments for robot skill acquisition. Our platform utilizes spatially adaptive resolution scales, where simulation resolution dynamically adjusts based on proximity to active robotic agents. Our framework markedly reduces the demand for extensive storage space and computation costs required for large-scale scenarios involving soft materials. We also establish a set of benchmark tasks in our platform, including both locomotion and manipulation tasks, and conduct experiments to evaluate the efficacy of various reinforcement learning algorithms and trajectory optimization techniques, both gradient-based and sampling-based. Preliminary results indicate that sampling-based trajectory optimization generally achieves better results for obtaining one trajectory to solve the task. Additionally, we conduct experiments in real-world environments to demonstrate that advancements made in our UBSoft simulator could translate to improved robot interactions with large-scale soft material. More videos can be found at https://vis-www.cs.umass.edu/ubsoft/.
Accelerating Materials Design via LLM-Guided Evolutionary Search
Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
Material discovery is a critical area of research with the potential to revolutionize various fields, including carbon capture, renewable energy, and electronics. However, the immense scale of the chemical space makes it challenging to explore all possible materials experimentally. In this paper, we introduce FlowLLM, a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials. FlowLLM first fine-tunes an LLM to learn an effective base distribution of meta-stable crystals in a text representation. After converting to a graph representation, the RFM model takes samples from the LLM and iteratively refines the coordinates and lattice parameters. Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by sim50% - a huge improvement on a difficult problem. Additionally, the crystals generated by FlowLLM are much closer to their relaxed state when compared with another leading model, significantly reducing post-hoc computational cost.
PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl
MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials
Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
Procedural Generation of Grain Orientations using the Wave Function Collapse Algorithm
Statistics of grain sizes and orientations in metals correlate to the material's mechanical properties. Reproducing representative volume elements for further analysis of deformation and failure in metals, like 316L stainless steel, is particularly important due to their wide use in manufacturing goods today. Two approaches, initially created for video games, were considered for the procedural generation of representative grain microstructures. The first is the Wave Function Collapse (WFC) algorithm, and the second is constraint propagation and probabilistic inference through Markov Junior, a free and open-source software. This study aimed to investigate these two algorithms' effectiveness in using reference electron backscatter diffraction (EBSD) maps and recreating a statistically similar one that could be used in further research. It utilized two stainless steel EBSD maps as references to test both algorithms. First, the WFC algorithm was too constricting and, thus, incapable of producing images that resembled EBSDs. The second, MarkovJunior, was much more effective in creating a Voronoi tessellation that could be used to create an EBSD map in Python. When comparing the results between the reference and the generated EBSD, we discovered that the orientation and volume fractions were extremely similar. With the study, it was concluded that MarkovJunior is an effective machine learning tool that can reproduce representative grain microstructures.
TOMATOES: Topology and Material Optimization for Latent Heat Thermal Energy Storage Devices
Latent heat thermal energy storage (LHTES) systems are compelling candidates for energy storage, primarily owing to their high storage density. Improving their performance is crucial for developing the next-generation efficient and cost effective devices. Topology optimization (TO) has emerged as a powerful computational tool to design LHTES systems by optimally distributing a high-conductivity material (HCM) and a phase change material (PCM). However, conventional TO typically limits to optimizing the geometry for a fixed, pre-selected materials. This approach does not leverage the large and expanding databases of novel materials. Consequently, the co-design of material and geometry for LHTES remains a challenge and unexplored. To address this limitation, we present an automated design framework for the concurrent optimization of material choice and topology. A key challenge is the discrete nature of material selection, which is incompatible with the gradient-based methods used for TO. We overcome this by using a data-driven variational autoencoder (VAE) to project discrete material databases for both the HCM and PCM onto continuous and differentiable latent spaces. These continuous material representations are integrated into an end-to-end differentiable, transient nonlinear finite-element solver that accounts for phase change. We demonstrate this framework on a problem aimed at maximizing the discharged energy within a specified time, subject to cost constraints. The effectiveness of the proposed method is validated through several illustrative examples.
3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models
The ability to generate 3D multiphase microstructures on-demand with targeted attributes can greatly accelerate the design of advanced materials. Here, we present a conditional latent diffusion model (LDM) framework that rapidly synthesizes high-fidelity 3D multiphase microstructures tailored to user specifications. Using this approach, we generate diverse two-phase and three-phase microstructures at high resolution (volumes of 128 times 128 times 64 voxels, representing >10^6 voxels each) within seconds, overcoming the scalability and time limitations of traditional simulation-based methods. Key design features, such as desired volume fractions and tortuosities, are incorporated as controllable inputs to guide the generative process, ensuring that the output structures meet prescribed statistical and topological targets. Moreover, the framework predicts corresponding manufacturing (processing) parameters for each generated microstructure, helping to bridge the gap between digital microstructure design and experimental fabrication. While demonstrated on organic photovoltaic (OPV) active-layer morphologies, the flexible architecture of our approach makes it readily adaptable to other material systems and microstructure datasets. By combining computational efficiency, adaptability, and experimental relevance, this framework addresses major limitations of existing methods and offers a powerful tool for accelerated materials discovery.
All that structure matches does not glitter
Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction taskx2014generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains approx40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms N, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.
Perovskite-R1: A Domain-Specialized LLM for Intelligent Discovery of Precursor Additives and Experimental Design
Perovskite solar cells (PSCs) have rapidly emerged as a leading contender in next-generation photovoltaic technologies, owing to their exceptional power conversion efficiencies and advantageous material properties. Despite these advances, challenges such as long-term stability, environmental sustainability, and scalable manufacturing continue to hinder their commercialization. Precursor additive engineering has shown promise in addressing these issues by enhancing both the performance and durability of PSCs. However, the explosive growth of scientific literature and the complex interplay of materials, processes, and device architectures make it increasingly difficult for researchers to efficiently access, organize, and utilize domain knowledge in this rapidly evolving field. To address this gap, we introduce Perovskite-R1, a specialized large language model (LLM) with advanced reasoning capabilities tailored for the discovery and design of PSC precursor additives. By systematically mining and curating 1,232 high-quality scientific publications and integrating a comprehensive library of 33,269 candidate materials, we constructed a domain-specific instruction-tuning dataset using automated question-answer generation and chain-of-thought reasoning. Fine-tuning the QwQ-32B model on this dataset resulted in Perovskite-R1, which can intelligently synthesize literature insights and generate innovative and practical solutions for defect passivation and the selection of precursor additives. Experimental validation of several model-proposed strategies confirms their effectiveness in improving material stability and performance. Our work demonstrates the potential of domain-adapted LLMs in accelerating materials discovery and provides a closed-loop framework for intelligent, data-driven advancements in perovskite photovoltaic research.
Gaussian Material Synthesis
We present a learning-based system for rapid mass-scale material synthesis that is useful for novice and expert users alike. The user preferences are learned via Gaussian Process Regression and can be easily sampled for new recommendations. Typically, each recommendation takes 40-60 seconds to render with global illumination, which makes this process impracticable for real-world workflows. Our neural network eliminates this bottleneck by providing high-quality image predictions in real time, after which it is possible to pick the desired materials from a gallery and assign them to a scene in an intuitive manner. Workflow timings against Disney's "principled" shader reveal that our system scales well with the number of sought materials, thus empowering even novice users to generate hundreds of high-quality material models without any expertise in material modeling. Similarly, expert users experience a significant decrease in the total modeling time when populating a scene with materials. Furthermore, our proposed solution also offers controllable recommendations and a novel latent space variant generation step to enable the real-time fine-tuning of materials without requiring any domain expertise.
PhysicsGen: Can Generative Models Learn from Images to Predict Complex Physical Relations?
The image-to-image translation abilities of generative learning models have recently made significant progress in the estimation of complex (steered) mappings between image distributions. While appearance based tasks like image in-painting or style transfer have been studied at length, we propose to investigate the potential of generative models in the context of physical simulations. Providing a dataset of 300k image-pairs and baseline evaluations for three different physical simulation tasks, we propose a benchmark to investigate the following research questions: i) are generative models able to learn complex physical relations from input-output image pairs? ii) what speedups can be achieved by replacing differential equation based simulations? While baseline evaluations of different current models show the potential for high speedups (ii), these results also show strong limitations toward the physical correctness (i). This underlines the need for new methods to enforce physical correctness. Data, baseline models and evaluation code http://www.physics-gen.org.
MatSynth: A Modern PBR Materials Dataset
We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth.
Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing
Scene representations using 3D Gaussian primitives have produced excellent results in modeling the appearance of static and dynamic 3D scenes. Many graphics applications, however, demand the ability to manipulate both the appearance and the physical properties of objects. We introduce Feature Splatting, an approach that unifies physics-based dynamic scene synthesis with rich semantics from vision language foundation models that are grounded by natural language. Our first contribution is a way to distill high-quality, object-centric vision-language features into 3D Gaussians, that enables semi-automatic scene decomposition using text queries. Our second contribution is a way to synthesize physics-based dynamics from an otherwise static scene using a particle-based simulator, in which material properties are assigned automatically via text queries. We ablate key techniques used in this pipeline, to illustrate the challenge and opportunities in using feature-carrying 3D Gaussians as a unified format for appearance, geometry, material properties and semantics grounded on natural language. Project website: https://feature-splatting.github.io/
MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
NeuBTF: Neural fields for BTF encoding and transfer
Neural material representations are becoming a popular way to represent materials for rendering. They are more expressive than analytic models and occupy less memory than tabulated BTFs. However, existing neural materials are immutable, meaning that their output for a certain query of UVs, camera, and light vector is fixed once they are trained. While this is practical when there is no need to edit the material, it can become very limiting when the fragment of the material used for training is too small or not tileable, which frequently happens when the material has been captured with a gonioreflectometer. In this paper, we propose a novel neural material representation which jointly tackles the problems of BTF compression, tiling, and extrapolation. At test time, our method uses a guidance image as input to condition the neural BTF to the structural features of this input image. Then, the neural BTF can be queried as a regular BTF using UVs, camera, and light vectors. Every component in our framework is purposefully designed to maximize BTF encoding quality at minimal parameter count and computational complexity, achieving competitive compression rates compared with previous work. We demonstrate the results of our method on a variety of synthetic and captured materials, showing its generality and capacity to learn to represent many optical properties.
Revealing diatom-inspired materials multifunctionality
Diatoms have been described as nanometer-born lithographers because of their ability to create sophisticated three-dimensional amorphous silica exoskeletons. The hierarchical architecture of these structures provides diatoms with mechanical protection and the ability to filter, float, and manipulate light. Therefore, they emerge as an extraordinary model of multifunctional materials from which to draw inspiration. In this paper, we use numerical simulations, analytical models, and experimental tests to unveil the structural and fluid dynamic efficiency of the Coscinodiscus species diatom. Then we propose a novel 3D printable multifunctional biomimetic material for applications such as porous filters, heat exchangers, drug delivery systems, lightweight structures, and robotics. Our results demonstrate the role of Nature as a material designer for efficient and tunable systems and highlight the potential of diatoms for engineering materials innovation. Additionally, the results reported in this paper lay the foundation to extend the structure-property characterization of diatoms.
An open-source robust machine learning platform for real-time detection and classification of 2D material flakes
The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.
Flow Matching for Discrete Systems: Efficient Free Energy Sampling Across Lattice Sizes and Temperatures
Generative models have advanced significantly in sampling material systems with continuous variables, such as atomistic structures. However, their application to discrete variables, like atom types or spin states, remains underexplored. In this work, we introduce a Boltzmann generator built on discrete flow matching, specifically tailored for systems with discrete phase-space coordinates (e.g., the Ising model or crystalline compounds). This approach enables a single model to sample free energy surfaces over a wide temperature range with minimal training overhead. In addition, the model generation is scalable to larger lattice sizes than those in the training set. We demonstrate the effectiveness of our approach on the 2D Ising model, showing efficient and reliable free energy sampling. This framework provides a scalable and computationally efficient solution for discrete coordinate systems and can be extended to sample the alchemical degrees of freedom in crystalline compounds.
Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally tractable formulation, interpreted as neural potential summation, that performs infinite interatomic potential summations in a deeply learned feature space. We then propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer. Compared to an existing Transformer-based model, the proposed model requires only 29.4% of the number of parameters, with minimal modifications to the original Transformer architecture. Despite the architectural simplicity, the proposed method outperforms state-of-the-art methods for various property regression tasks on the Materials Project and JARVIS-DFT datasets.
Orb: A Fast, Scalable Neural Network Potential
We introduce Orb, a family of universal interatomic potentials for atomistic modelling of materials. Orb models are 3-6 times faster than existing universal potentials, stable under simulation for a range of out of distribution materials and, upon release, represented a 31% reduction in error over other methods on the Matbench Discovery benchmark. We explore several aspects of foundation model development for materials, with a focus on diffusion pretraining. We evaluate Orb as a model for geometry optimization, Monte Carlo and molecular dynamics simulations.
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model -- and its qualitative and at times quantitative accuracy -- on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, and chemical reactions. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
MetaScientist: A Human-AI Synergistic Framework for Automated Mechanical Metamaterial Design
The discovery of novel mechanical metamaterials, whose properties are dominated by their engineered structures rather than chemical composition, is a knowledge-intensive and resource-demanding process. To accelerate the design of novel metamaterials, we present MetaScientist, a human-in-the-loop system that integrates advanced AI capabilities with expert oversight with two primary phases: (1) hypothesis generation, where the system performs complex reasoning to generate novel and scientifically sound hypotheses, supported with domain-specific foundation models and inductive biases retrieved from existing literature; (2) 3D structure synthesis, where a 3D structure is synthesized with a novel 3D diffusion model based on the textual hypothesis and refined it with a LLM-based refinement model to achieve better structure properties. At each phase, domain experts iteratively validate the system outputs, and provide feedback and supplementary materials to ensure the alignment of the outputs with scientific principles and human preferences. Through extensive evaluation from human scientists, MetaScientist is able to deliver novel and valid mechanical metamaterial designs that have the potential to be highly impactful in the metamaterial field.
UniEM-3M: A Universal Electron Micrograph Dataset for Microstructural Segmentation and Generation
Quantitative microstructural characterization is fundamental to materials science, where electron micrograph (EM) provides indispensable high-resolution insights. However, progress in deep learning-based EM characterization has been hampered by the scarcity of large-scale, diverse, and expert-annotated datasets, due to acquisition costs, privacy concerns, and annotation complexity. To address this issue, we introduce UniEM-3M, the first large-scale and multimodal EM dataset for instance-level understanding. It comprises 5,091 high-resolution EMs, about 3 million instance segmentation labels, and image-level attribute-disentangled textual descriptions, a subset of which will be made publicly available. Furthermore, we are also releasing a text-to-image diffusion model trained on the entire collection to serve as both a powerful data augmentation tool and a proxy for the complete data distribution. To establish a rigorous benchmark, we evaluate various representative instance segmentation methods on the complete UniEM-3M and present UniEM-Net as a strong baseline model. Quantitative experiments demonstrate that this flow-based model outperforms other advanced methods on this challenging benchmark. Our multifaceted release of a partial dataset, a generative model, and a comprehensive benchmark -- available at huggingface -- will significantly accelerate progress in automated materials analysis.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
We propose fine-tuning large language models for generation of stable materials. While unorthodox, fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable, with around 90% of sampled structures obeying physical constraints on atom positions and charges. Using energy above hull calculations from both learned ML potentials and gold-standard DFT calculations, we show that our strongest model (fine-tuned LLaMA-2 70B) can generate materials predicted to be metastable at about twice the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material, infilling of partial structures and text-conditional generation. Finally, we show that language models' ability to capture key symmetries of crystal structures improves with model scale, suggesting that the biases of pretrained LLMs are surprisingly well-suited for atomistic data.
DiffCrysGen: A Score-Based Diffusion Model for Design of Diverse Inorganic Crystalline Materials
Crystal structure generation is a foundational challenge in materials discovery, particularly in designing functional inorganic crystalline materials with desired properties. Most existing diffusion-based generative models for crystals rely on complex, hand-crafted priors and modular architectures to separately model atom types, atomic positions, and lattice parameters. These methods often require customized diffusion processes and conditional denoising, which can introduce additional model complexities and inconsistencies. Here we introduce DiffCrysGen, a fully data-driven, score-based diffusion model that jointly learns the distribution of all structural components in crystalline materials. With crystal structure representation as unified 2D matrices, DiffCrysGen bypasses the need for task-specific priors or decoupled modules, enabling end-to-end generation of atom types, fractional coordinates, and lattice parameters within a single framework. Our model learns crystallographic symmetry and chemical validity directly from large-scale datasets, allowing it to scale to complex materials discovery tasks. As a demonstration, we applied DiffCrysGen to the design of rare-earth-free magnetic materials with high saturation magnetization, showing its effectiveness in generating stable, diverse, and property-aligned candidates for sustainable magnet applications.
DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network
The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.
Accelerating the Search for Superconductors Using Machine Learning
Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has been made on AI for materials data, benchmarks, and models, a barrier that has emerged is the lack of publicly available training data and open pre-trained models. To address this, we present a Meta FAIR release of the Open Materials 2024 (OMat24) large-scale open dataset and an accompanying set of pre-trained models. OMat24 contains over 110 million density functional theory (DFT) calculations focused on structural and compositional diversity. Our EquiformerV2 models achieve state-of-the-art performance on the Matbench Discovery leaderboard and are capable of predicting ground-state stability and formation energies to an F1 score above 0.9 and an accuracy of 20 meV/atom, respectively. We explore the impact of model size, auxiliary denoising objectives, and fine-tuning on performance across a range of datasets including OMat24, MPtraj, and Alexandria. The open release of the OMat24 dataset and models enables the research community to build upon our efforts and drive further advancements in AI-assisted materials science.
Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction
Matbench Discovery simulates the deployment of machine learning (ML) energy models in a high-throughput search for stable inorganic crystals. We address the disconnect between (i) thermodynamic stability and formation energy and (ii) in-domain vs out-of-distribution performance. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with further insights into trade-offs between various performance metrics. To answer the question which ML methodology performs best at materials discovery, our initial release explores a variety of models including random forests, graph neural networks (GNN), one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials (UIP). Ranked best-to-worst by their test set F1 score on thermodynamic stability prediction, we find CHGNet > M3GNet > MACE > ALIGNN > MEGNet > CGCNN > CGCNN+P > Wrenformer > BOWSR > Voronoi tessellation fingerprints with random forest. The top 3 models are UIPs, the winning methodology for ML-guided materials discovery, achieving F1 scores of ~0.6 for crystal stability classification and discovery acceleration factors (DAF) of up to 5x on the first 10k most stable predictions compared to dummy selection from our test set. We also highlight a sharp disconnect between commonly used global regression metrics and more task-relevant classification metrics. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV/atom above the convex hull where most materials are. Our results highlight the need to focus on classification metrics that actually correlate with improved stability hit rate.
Phy124: Fast Physics-Driven 4D Content Generation from a Single Image
4D content generation focuses on creating dynamic 3D objects that change over time. Existing methods primarily rely on pre-trained video diffusion models, utilizing sampling processes or reference videos. However, these approaches face significant challenges. Firstly, the generated 4D content often fails to adhere to real-world physics since video diffusion models do not incorporate physical priors. Secondly, the extensive sampling process and the large number of parameters in diffusion models result in exceedingly time-consuming generation processes. To address these issues, we introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image. Phy124 integrates physical simulation directly into the 4D generation process, ensuring that the resulting 4D content adheres to natural physical laws. Phy124 also eliminates the use of diffusion models during the 4D dynamics generation phase, significantly speeding up the process. Phy124 allows for the control of 4D dynamics, including movement speed and direction, by manipulating external forces. Extensive experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times, achieving stateof-the-art performance. The code and generated 4D content are available at the provided link: https://anonymous.4open.science/r/BBF2/.
MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery
Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.
Fast and Accurate Prediction of Material Properties with Three-Body Tight-Binding Model for the Periodic Table
Parameterized tight-binding models fit to first principles calculations can provide an efficient and accurate quantum mechanical method for predicting properties of molecules and solids. However, well-tested parameter sets are generally only available for a limited number of atom combinations, making routine use of this method difficult. Furthermore, most previous models consider only simple two-body interactions, which limits accuracy. To tackle these challenges, we develop a density functional theory database of nearly one million materials, which we use to fit a universal set of tight-binding parameters for 65 elements and their binary combinations. We include both two-body and three-body effective interaction terms in our model, plus self-consistent charge transfer, enabling our model to work for metallic, covalent, and ionic bonds with the same parameter set. To ensure predictive power, we adopt a learning framework where we repeatedly test the model on new low energy crystal structures and then add them to the fitting dataset, iterating until predictions improve. We distribute the materials database and tools developed in this work publicly.
Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing
Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here we provide a detailed analysis of the heterogenous graph structures of spider webs, and use deep learning as a way to model and then synthesize artificial, bio-inspired 3D web structures. The generative AI models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) An analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation, 2) a discrete diffusion model with full neighbor representation, and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bio-inspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles towards integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.
Learning large scale industrial physics simulations
In an industrial group like Safran, numerical simulations of physical phenomena are integral to most design processes. At Safran's corporate research center, we enhance these processes by developing fast and reliable surrogate models for various physics. We focus here on two technologies developed in recent years. The first is a physical reduced-order modeling method for non-linear structural mechanics and thermal analysis, used for calculating the lifespan of high-pressure turbine blades and performing heat analysis of high-pressure compressors. The second technology involves learning physics simulations with non-parameterized geometrical variability using classical machine learning tools, such as Gaussian process regression. Finally, we present our contributions to the open-source and open-data community.
Hitchhiker's guide on Energy-Based Models: a comprehensive review on the relation with other generative models, sampling and statistical physics
Energy-Based Models (EBMs) have emerged as a powerful framework in the realm of generative modeling, offering a unique perspective that aligns closely with principles of statistical mechanics. This review aims to provide physicists with a comprehensive understanding of EBMs, delineating their connection to other generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalizing Flows. We explore the sampling techniques crucial for EBMs, including Markov Chain Monte Carlo (MCMC) methods, and draw parallels between EBM concepts and statistical mechanics, highlighting the significance of energy functions and partition functions. Furthermore, we delve into state-of-the-art training methodologies for EBMs, covering recent advancements and their implications for enhanced model performance and efficiency. This review is designed to clarify the often complex interconnections between these models, which can be challenging due to the diverse communities working on the topic.
BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm^3 on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
Classification-based detection and quantification of cross-domain data bias in materials discovery
It stands to reason that the amount and the quality of data is of key importance for setting up accurate AI-driven models. Among others, a fundamental aspect to consider is the bias introduced during sample selection in database generation. This is particularly relevant when a model is trained on a specialized dataset to predict a property of interest, and then applied to forecast the same property over samples having a completely different genesis. Indeed, the resulting biased model will likely produce unreliable predictions for many of those out-of-the-box samples. Neglecting such an aspect may hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. In this regard, with superconducting and thermoelectric materials as two prototypical case studies in the field of energy material discovery, we present and validate a new method (based on a classification strategy) capable of detecting, quantifying and circumventing the presence of cross-domain data bias.
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Neural Photometry-guided Visual Attribute Transfer
We present a deep learning-based method for propagating spatially-varying visual material attributes (e.g. texture maps or image stylizations) to larger samples of the same or similar materials. For training, we leverage images of the material taken under multiple illuminations and a dedicated data augmentation policy, making the transfer robust to novel illumination conditions and affine deformations. Our model relies on a supervised image-to-image translation framework and is agnostic to the transferred domain; we showcase a semantic segmentation, a normal map, and a stylization. Following an image analogies approach, the method only requires the training data to contain the same visual structures as the input guidance. Our approach works at interactive rates, making it suitable for material edit applications. We thoroughly evaluate our learning methodology in a controlled setup providing quantitative measures of performance. Last, we demonstrate that training the model on a single material is enough to generalize to materials of the same type without the need for massive datasets.
MatQnA: A Benchmark Dataset for Multi-modal Large Language Models in Materials Characterization and Analysis
Recently, large language models (LLMs) have achieved remarkable breakthroughs in general domains such as programming and writing, and have demonstrated strong potential in various scientific research scenarios. However, the capabilities of AI models in the highly specialized field of materials characterization and analysis have not yet been systematically or sufficiently validated. To address this gap, we present MatQnA, the first multi-modal benchmark dataset specifically designed for material characterization techniques. MatQnA includes ten mainstream characterization methods, such as X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), etc. We employ a hybrid approach combining LLMs with human-in-the-loop validation to construct high-quality question-answer pairs, integrating both multiple-choice and subjective questions. Our preliminary evaluation results show that the most advanced multi-modal AI models (e.g., GPT-4.1, Claude 4, Gemini 2.5, and Doubao Vision Pro 32K) have already achieved nearly 90% accuracy on objective questions in materials data interpretation and analysis tasks, demonstrating strong potential for applications in materials characterization and analysis. The MatQnA dataset is publicly available at https://huggingface.co/datasets/richardhzgg/matQnA.
Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet
As the number of novel data-driven approaches to material science continues to grow, it is crucial to perform consistent quality, reliability and applicability assessments of model performance. In this paper, we benchmark the Materials Optimal Descriptor Network (MODNet) method and architecture against the recently released MatBench v0.1, a curated test suite of materials datasets. MODNet is shown to outperform current leaders on 6 of the 13 tasks, whilst closely matching the current leaders on a further 2 tasks; MODNet performs particularly well when the number of samples is below 10,000. Attention is paid to two topics of concern when benchmarking models. First, we encourage the reporting of a more diverse set of metrics as it leads to a more comprehensive and holistic comparison of model performance. Second, an equally important task is the uncertainty assessment of a model towards a target domain. Significant variations in validation errors can be observed, depending on the imbalance and bias in the training set (i.e., similarity between training and application space). By using an ensemble MODNet model, confidence intervals can be built and the uncertainty on individual predictions can be quantified. Imbalance and bias issues are often overlooked, and yet are important for successful real-world applications of machine learning in materials science and condensed matter.
Facet: highly efficient E(3)-equivariant networks for interatomic potentials
Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.
One-shot recognition of any material anywhere using contrastive learning with physics-based rendering
Visual recognition of materials and their states is essential for understanding most aspects of the world, from determining whether food is cooked, metal is rusted, or a chemical reaction has occurred. However, current image recognition methods are limited to specific classes and properties and can't handle the vast number of material states in the world. To address this, we present MatSim: the first dataset and benchmark for computer vision-based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples. The dataset contains synthetic and natural images. The synthetic images were rendered using giant collections of textures, objects, and environments generated by computer graphics artists. We use mixtures and gradual transitions between materials to allow the system to learn cases with smooth transitions between states (like gradually cooked food). We also render images with materials inside transparent containers to support beverage and chemistry lab use cases. We use this dataset to train a siamese net that identifies the same material in different objects, mixtures, and environments. The descriptor generated by this net can be used to identify the states of materials and their subclasses using a single image. We also present the first few-shot material recognition benchmark with images from a wide range of fields, including the state of foods and drinks, types of grounds, and many other use cases. We show that a net trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark and also achieves good results on other unsupervised material classification tasks.
OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Recent advances in deep learning such as neural radiance fields and implicit neural representations have significantly propelled the field of 3D reconstruction. However, accurately reconstructing objects with complex optical properties, such as metals and glass, remains a formidable challenge due to their unique specular and light-transmission characteristics. To facilitate the development of solutions to these challenges, we introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials-including conductors, dielectrics, plastics, and their roughened variants- and captured under 723 diverse lighting conditions. To this end, we utilized physics-based rendering with laboratory-measured Indices of Refraction (IOR) and generated high-fidelity multiview images that closely replicate real-world objects. OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask. It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials, thereby paving the way for the development of 3D reconstruction algorithms capable of handling complex material properties.
A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials
The presence of point defects such as vacancies plays an important role in material design. Here, we demonstrate that a graph neural network (GNN) model trained only on perfect materials can also be used to predict vacancy formation energies (E_{vac}) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations with reasonable accuracy and show the potential that GNNs are able to capture a functional form for energy predictions. To test this strategy, we developed a DFT dataset of 508 E_{vac} consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192494 E_{vac} for 55723 materials in the JARVIS-DFT database.
Few-Shot Physically-Aware Articulated Mesh Generation via Hierarchical Deformation
We study the problem of few-shot physically-aware articulated mesh generation. By observing an articulated object dataset containing only a few examples, we wish to learn a model that can generate diverse meshes with high visual fidelity and physical validity. Previous mesh generative models either have difficulties in depicting a diverse data space from only a few examples or fail to ensure physical validity of their samples. Regarding the above challenges, we propose two key innovations, including 1) a hierarchical mesh deformation-based generative model based upon the divide-and-conquer philosophy to alleviate the few-shot challenge by borrowing transferrable deformation patterns from large scale rigid meshes and 2) a physics-aware deformation correction scheme to encourage physically plausible generations. We conduct extensive experiments on 6 articulated categories to demonstrate the superiority of our method in generating articulated meshes with better diversity, higher visual fidelity, and better physical validity over previous methods in the few-shot setting. Further, we validate solid contributions of our two innovations in the ablation study. Project page with code is available at https://meowuu7.github.io/few-arti-obj-gen.
Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.
PhysiX: A Foundation Model for Physics Simulations
Foundation models have achieved remarkable success across video, image, and language domains. By scaling up the number of parameters and training datasets, these models acquire generalizable world knowledge and often surpass task-specific approaches. However, such progress has yet to extend to the domain of physics simulation. A primary bottleneck is data scarcity: while millions of images, videos, and textual resources are readily available on the internet, the largest physics simulation datasets contain only tens of thousands of samples. This data limitation hinders the use of large models, as overfitting becomes a major concern. As a result, physics applications typically rely on small models, which struggle with long-range prediction due to limited context understanding. Additionally, unlike images, videos, or text-which typically exhibit fixed granularity-physics datasets often vary drastically in scale, amplifying the challenges of scaling up multitask training. We introduce PhysiX, the first large-scale foundation model for physics simulation. PhysiX is a 4.5B parameter autoregressive generative model. It uses a discrete tokenizer to encode physical processes at different scales into a sequence of discrete tokens, and employs an autoregressive next-token prediction objective to model such processes in the token space. To mitigate the rounding error in the discretization process, PhysiX incorporates a specialized refinement module. Through extensive experiments, we show that PhysiX effectively addresses the data bottleneck, outperforming task-specific baselines under comparable settings as well as the previous absolute state-of-the-art approaches on The Well benchmark. Our results indicate that knowledge learned from natural videos can be successfully transferred to physics simulation, and that joint training across diverse simulation tasks enables synergistic learning.
A Unified Predictive and Generative Solution for Liquid Electrolyte Formulation
Liquid electrolytes are critical components of next-generation energy storage systems, enabling fast ion transport, minimizing interfacial resistance, and ensuring electrochemical stability for long-term battery performance. However, measuring electrolyte properties and designing formulations remain experimentally and computationally expensive. In this work, we present a unified framework for designing liquid electrolyte formulation, integrating a forward predictive model with an inverse generative approach. Leveraging both computational and experimental data collected from literature and extensive molecular simulations, we train a predictive model capable of accurately estimating electrolyte properties from ionic conductivity to solvation structure. Our physics-informed architecture preserves permutation invariance and incorporates empirical dependencies on temperature and salt concentration, making it broadly applicable to property prediction tasks across molecular mixtures. Furthermore, we introduce -- to the best of our knowledge -- the first generative machine learning framework for molecular mixture design, demonstrated on electrolyte systems. This framework supports multi-condition-constrained generation, addressing the inherently multi-objective nature of materials design. As a proof of concept, we experimentally identified three liquid electrolytes with both high ionic conductivity and anion-concentrated solvation structure. This unified framework advances data-driven electrolyte design and can be readily extended to other complex chemical systems beyond electrolytes.
Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing
An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
The analysis of parametric and non-parametric uncertainties of very large dynamical systems requires the construction of a stochastic model of said system. Linear approaches relying on random matrix theory and principal componant analysis can be used when systems undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a random generator of boundary conditions for fast submodels by using machine learning. We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant. Physics-informed neural networks is a possible choice for a data-driven method to replace linear modal analysis. An architecture that support a random component is necessary for the construction of the stochastic model of the physical system for non-parametric uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in the data. Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved convergence results for our problem. The objective of our approach is to train a GAN on data from a finite element method code (Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a submodel. The submodel and the training data have both the same geometrical support. It is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation phase, the framework can be viewed as a randomized and parametrized simulation generator on the submodel, which can be used as a Monte Carlo estimator.
Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction
Machine learning interatomic potentials (MLIPs) have become increasingly effective at approximating quantum mechanical calculations at a fraction of the computational cost. However, lower errors on held out test sets do not always translate to improved results on downstream physical property prediction tasks. In this paper, we propose testing MLIPs on their practical ability to conserve energy during molecular dynamic simulations. If passed, improved correlations are found between test errors and their performance on physical property prediction tasks. We identify choices which may lead to models failing this test, and use these observations to improve upon highly-expressive models. The resulting model, eSEN, provides state-of-the-art results on a range of physical property prediction tasks, including materials stability prediction, thermal conductivity prediction, and phonon calculations.
Reliable End-to-End Material Information Extraction from the Literature with Source-Tracked Multi-Stage Large Language Models
Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.
Synthetic Video Enhances Physical Fidelity in Video Synthesis
We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
"PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.
Reoccurring patterns in hierarchical protein materials and music: The power of analogies
Complex hierarchical structures composed of simple nanoscale building blocks form the basis of most biological materials. Here we demonstrate how analogies between seemingly different fields enable the understanding of general principles by which functional properties in hierarchical systems emerge, similar to an analogy learning process. Specifically, natural hierarchical materials like spider silk exhibit properties comparable to classical music in terms of their hierarchical structure and function. As a comparative tool here we apply hierarchical ontology logs (olog) that follow a rigorous mathematical formulation based on category theory to provide an insightful system representation by expressing knowledge in a conceptual map. We explain the process of analogy creation, draw connections at several levels of hierarchy and identify similar patterns that govern the structure of the hierarchical systems silk and music and discuss the impact of the derived analogy for nanotechnology.
Physical Thickness Characterization of the FRIB Production Targets
The FRIB heavy-ion accelerator, commissioned in 2022, is a leading facility for producing rare isotope beams (RIBs) and exploring nuclei beyond the limits of stability. These RIBs are produced via reactions between stable primary beams and a graphite target. Approximately 20-40 \% of the primary beam power is deposited in the target, requiring efficient thermal dissipation. Currently, FRIB operates with a primary beam power of up to 20 kW. To enhance thermal dissipation efficiency, a single-slice rotating graphite target with a diameter of approximately 30 cm is employed. The effective target region is a 1 cm-wide outer rim of the graphite disc. To achieve high RIB production rates, the areal thickness variation must be constrained within 2 \%. This paper presents physical thickness characterizations of FRIB production targets with various nominal thicknesses, measured using a custom-built non-contact thickness measurement apparatus.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
Crystal Structure Generation with Autoregressive Large Language Modeling
The generation of plausible crystal structures is often the first step in predicting the structure and properties of a material from its chemical composition. Quickly generating and predicting inorganic crystal structures is important for the discovery of new materials, which can target applications such as energy or electronic devices. However, most current methods for crystal structure prediction are computationally expensive, slowing the pace of innovation. Seeding structure prediction algorithms with quality generated candidates can overcome a major bottleneck. Here, we introduce CrystaLLM, a methodology for the versatile generation of crystal structures, based on the autoregressive large language modeling (LLM) of the Crystallographic Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses on modeling crystal structures through text. CrystaLLM can produce plausible crystal structures for a wide range of inorganic compounds unseen in training, as demonstrated by ab initio simulations. The integration with predictors of formation energy permits the use of a Monte Carlo Tree Search algorithm to improve the generation of meaningful structures. Our approach challenges conventional representations of crystals, and demonstrates the potential of LLMs for learning effective 'world models' of crystal chemistry, which will lead to accelerated discovery and innovation in materials science.
Physics-based Indirect Illumination for Inverse Rendering
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images. To model the illumination of a scene, existing inverse rendering works either completely ignore the indirect illumination or model it by coarse approximations, leading to sub-optimal illumination, geometry, and material prediction of the scene. In this work, we propose a physics-based illumination model that first locates surface points through an efficient refined sphere tracing algorithm, then explicitly traces the incoming indirect lights at each surface point based on reflection. Then, we estimate each identified indirect light through an efficient neural network. Moreover, we utilize the Leibniz's integral rule to resolve non-differentiability in the proposed illumination model caused by boundary lights inspired by differentiable irradiance in computer graphics. As a result, the proposed differentiable illumination model can be learned end-to-end together with geometry and materials estimation. As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method performs favorably against existing inverse rendering methods on novel view synthesis and inverse rendering.
Homogenization framework for rigid and non-rigid foldable origami metamaterials
Origami metamaterials typically consist of folded sheets with periodic patterns, conferring them with remarkable mechanical properties. In the context of Continuum Mechanics, the majority of existing predictive methods are mechanism analogs which favor rigid folding and panel bending. While effective in predicting primary deformation modes, existing methods fall short in capturing the full spectrum of deformation of non-rigid foldable origami, such as the emergence of curvature along straight creases, local strain at vertices and warpage in panels. To fully capture the entire deformation spectrum and enhance the accuracy of existing methods, this paper introduces a homogenization framework for origami metamaterials where the faces are modeled as plate elements. Both asymptotic and energy-based homogenization methods are formulated and implemented. As a representative crease pattern, we examine the Miura origami sheet homogenized as an equivalent Kirchhoff-Love plate. The results reveal that certain effective elastic properties are nonlinearly related to both the initial fold angle and the crease stiffness. When benchmarked with results from fully resolved simulations, our framework yields errors up to 12.9\%, while existing models, including the bar-and-hinge model and the rigid-panel model, show up to 161\% error. The differences in errors are associated with the complex modes of crease and panel deformation in non-rigid origami, unexplored by the existing models. This work demonstrates a precise and efficient continuum framework for origami metamaterials as an effective strategy for predicting their elastic properties, understanding their mechanics, and designing their functionalities.
Scalable Reactive Atomistic Dynamics with GAIA
The groundbreaking advance in materials and chemical research has been driven by the development of atomistic simulations. However, the broader applicability of the atomistic simulations remains restricted, as they inherently depend on energy models that are either inaccurate or computationally prohibitive. Machine learning interatomic potentials (MLIPs) have recently emerged as a promising class of energy models, but their deployment remains challenging due to the lack of systematic protocols for generating diverse training data. Here we automate the construction of training datasets to enable the development of general-purpose MLIPs, by introducing GAIA, an end-to-end framework to build a wide range of atomic arrangements. By employing systematic evaluation of metadynamics for effective structural exploration, GAIA overcomes the heuristic nature of conventional dataset generation. Using GAIA, we constructed Titan25, a benchmark-scale dataset, and trained MLIPs that closely match both static and dynamic density functional theory results. The models further reproduce experimental observations across reactive regimes, including detonation, coalescence, and catalytic activity. GAIA narrows the gap between experiment and simulation, and paves the way for the development of universal MLIPs that can reliably describe a wide spectrum of materials and chemical processes.
VLMaterial: Procedural Material Generation with Large Vision-Language Models
Procedural materials, represented as functional node graphs, are ubiquitous in computer graphics for photorealistic material appearance design. They allow users to perform intuitive and precise editing to achieve desired visual appearances. However, creating a procedural material given an input image requires professional knowledge and significant effort. In this work, we leverage the ability to convert procedural materials into standard Python programs and fine-tune a large pre-trained vision-language model (VLM) to generate such programs from input images. To enable effective fine-tuning, we also contribute an open-source procedural material dataset and propose to perform program-level augmentation by prompting another pre-trained large language model (LLM). Through extensive evaluation, we show that our method outperforms previous methods on both synthetic and real-world examples.
Chord: Chain of Rendering Decomposition for PBR Material Estimation from Generated Texture Images
Material creation and reconstruction are crucial for appearance modeling but traditionally require significant time and expertise from artists. While recent methods leverage visual foundation models to synthesize PBR materials from user-provided inputs, they often fall short in quality, flexibility, and user control. We propose a novel two-stage generate-and-estimate framework for PBR material generation. In the generation stage, a fine-tuned diffusion model synthesizes shaded, tileable texture images aligned with user input. In the estimation stage, we introduce a chained decomposition scheme that sequentially predicts SVBRDF channels by passing previously extracted representation as input into a single-step image-conditional diffusion model. Our method is efficient, high quality, and enables flexible user control. We evaluate our approach against existing material generation and estimation methods, demonstrating superior performance. Our material estimation method shows strong robustness on both generated textures and in-the-wild photographs. Furthermore, we highlight the flexibility of our framework across diverse applications, including text-to-material, image-to-material, structure-guided generation, and material editing.
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation
Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.
Elucidation of Relaxation Dynamics Beyond Equilibrium Through AI-informed X-ray Photon Correlation Spectroscopy
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales, however spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work we have developed an unsupervised deep learning (DL) framework for automated classification and interpretation of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system behavior. We demonstrate how this method can be used to rapidly explore large datasets to identify samples of interest, and we apply this approach to directly correlate bulk properties of a model system to microscopic dynamics. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
ADAPT: Lightweight, Long-Range Machine Learning Force Fields Without Graphs
Point defects play a central role in driving the properties of materials. First-principles methods are widely used to compute defect energetics and structures, including at scale for high-throughput defect databases. However, these methods are computationally expensive, making machine-learning force fields (MLFFs) an attractive alternative for accelerating structural relaxations. Most existing MLFFs are based on graph neural networks (GNNs), which can suffer from oversmoothing and poor representation of long-range interactions. Both of these issues are especially of concern when modeling point defects. To address these challenges, we introduce the Accelerated Deep Atomic Potential Transformer (ADAPT), an MLFF that replaces graph representations with a direct coordinates-in-space formulation and explicitly considers all pairwise atomic interactions. Atoms are treated as tokens, with a Transformer encoder modeling their interactions. Applied to a dataset of silicon point defects, ADAPT achieves a roughly 33 percent reduction in both force and energy prediction errors relative to a state-of-the-art GNN-based model, while requiring only a fraction of the computational cost.
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine. ADPs capture atomic vibrations, reflecting thermal and structural properties, but traditional computation is often expensive. This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature. CartNet integrates a neighbour equalization technique to emphasize covalent and contact interactions, and a Cholesky-based head to ensure valid ADP predictions. We also propose a rotational SO(3) data augmentation strategy during training to handle unseen orientations. An ADP dataset with over 200,000 experimental crystal structures from the Cambridge Structural Database (CSD) was curated to validate the approach. CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches. We further evaluated CartNet on other datasets covering formation energy, band gap, total energy, energy above the convex hull, bulk moduli, and shear moduli, achieving 7.71% better results on the Jarvis Dataset and 13.16% on the Materials Project Dataset. These gains establish CartNet as a state-of-the-art solution for diverse crystal property predictions. Project website and online demo: https://www.ee.ub.edu/cartnet
A Foundational Potential Energy Surface Dataset for Materials
Accurate potential energy surface (PES) descriptions are essential for atomistic simulations of materials. Universal machine learning interatomic potentials (UMLIPs)^{1-3} offer a computationally efficient alternative to density functional theory (DFT)^4 for PES modeling across the periodic table. However, their accuracy today is fundamentally constrained due to a reliance on DFT relaxation data.^{5,6} Here, we introduce MatPES, a foundational PES dataset comprising sim 400,000 structures carefully sampled from 281 million molecular dynamics snapshots that span 16 billion atomic environments. We demonstrate that UMLIPs trained on the modestly sized MatPES dataset can rival, or even outperform, prior models trained on much larger datasets across a broad range of equilibrium, near-equilibrium, and molecular dynamics property benchmarks. We also introduce the first high-fidelity PES dataset based on the revised regularized strongly constrained and appropriately normed (r^2SCAN) functional^7 with greatly improved descriptions of interatomic bonding. The open source MatPES initiative emphasizes the importance of data quality over quantity in materials science and enables broad community-driven advancements toward more reliable, generalizable, and efficient UMLIPs for large-scale materials discovery and design.
Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning
We develop a multi-step workflow for the discovery of conventional superconductors, starting with a Bardeen Cooper Schrieffer inspired pre-screening of 1736 materials with high Debye temperature and electronic density of states. Next, we perform electron-phonon coupling calculations for 1058 of them to establish a large and systematic database of BCS superconducting properties. Using the McMillan-Allen-Dynes formula, we identify 105 dynamically stable materials with transition temperatures, Tc>5 K. Additionally, we analyze trends in our dataset and individual materials including MoN, VC, VTe, KB6, Ru3NbC, V3Pt, ScN, LaN2, RuO2, and TaC. We demonstrate that deep-learning(DL) models can predict superconductor properties faster than direct first principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve model performance versus a direct DL prediction of Tc. We apply the trained models on the crystallographic open database and pre-screen candidates for further DFT calculations.
Zyxin is all you need: machine learning adherent cell mechanics
Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. No systematic strategy currently exists to infer large-scale physical properties of a cell from its many molecular components. This is a significant obstacle to understanding biophysical processes such as cell adhesion and migration. Here, we develop a data-driven biophysical modeling approach to learn the mechanical behavior of adherent cells. We first train neural networks to predict forces generated by adherent cells from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion protein, such as zyxin, are sufficient to predict forces and generalize to unseen biological regimes. This protein field alone contains enough information to yield accurate predictions even if forces themselves are generated by many interacting proteins. We next develop two approaches - one explicitly constrained by physics, the other more agnostic - that help construct data-driven continuum models of cellular forces using this single focal adhesion field. Both strategies consistently reveal that cellular forces are encoded by two different length scales in adhesion protein distributions. Beyond adherent cell mechanics, our work serves as a case study for how to integrate neural networks in the construction of predictive phenomenological models in cell biology, even when little knowledge of the underlying microscopic mechanisms exist.
Operationalizing Serendipity: Multi-Agent AI Workflows for Enhanced Materials Characterization with Theory-in-the-Loop
The history of science is punctuated by serendipitous discoveries, where unexpected observations, rather than targeted hypotheses, opened new fields of inquiry. While modern autonomous laboratories excel at accelerating hypothesis testing, their optimization for efficiency risks overlooking these crucial, unplanned findings. To address this gap, we introduce SciLink, an open-source, multi-agent artificial intelligence framework designed to operationalize serendipity in materials research by creating a direct, automated link between experimental observation, novelty assessment, and theoretical simulations. The framework employs a hybrid AI strategy where specialized machine learning models perform quantitative analysis of experimental data, while large language models handle higher-level reasoning. These agents autonomously convert raw data from materials characterization techniques into falsifiable scientific claims, which are then quantitatively scored for novelty against the published literature. We demonstrate the framework's versatility across diverse research scenarios, showcasing its application to atomic-resolution and hyperspectral data, its capacity to integrate real-time human expert guidance, and its ability to close the research loop by proposing targeted follow-up experiments. By systematically analyzing all observations and contextualizing them, SciLink provides a practical framework for AI-driven materials research that not only enhances efficiency but also actively cultivates an environment ripe for serendipitous discoveries, thereby bridging the gap between automated experimentation and open-ended scientific exploration.
FreNBRDF: A Frequency-Rectified Neural Material Representation
Accurate material modeling is crucial for achieving photorealistic rendering, bridging the gap between computer-generated imagery and real-world photographs. While traditional approaches rely on tabulated BRDF data, recent work has shifted towards implicit neural representations, which offer compact and flexible frameworks for a range of tasks. However, their behavior in the frequency domain remains poorly understood. To address this, we introduce FreNBRDF, a frequency-rectified neural material representation. By leveraging spherical harmonics, we integrate frequency-domain considerations into neural BRDF modeling. We propose a novel frequency-rectified loss, derived from a frequency analysis of neural materials, and incorporate it into a generalizable and adaptive reconstruction and editing pipeline. This framework enhances fidelity, adaptability, and efficiency. Extensive experiments demonstrate that \ours improves the accuracy and robustness of material appearance reconstruction and editing compared to state-of-the-art baselines, enabling more structured and interpretable downstream tasks and applications.
Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities
The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.
How Will It Drape Like? Capturing Fabric Mechanics from Depth Images
We propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim-to-real loop.Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
ProtAgents: Protein discovery via large language model multi-agent collaborations combining physics and machine learning
Designing de novo proteins beyond those found in nature holds significant promise for advancements in both scientific and engineering applications. Current methodologies for protein design often rely on AI-based models, such as surrogate models that address end-to-end problems by linking protein structure to material properties or vice versa. However, these models frequently focus on specific material objectives or structural properties, limiting their flexibility when incorporating out-of-domain knowledge into the design process or comprehensive data analysis is required. In this study, we introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs), where multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment. The versatility in agent development allows for expertise in diverse domains, including knowledge retrieval, protein structure analysis, physics-based simulations, and results analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile approach to tackling protein design and analysis problems, as demonstrated through diverse examples in this study. The problems of interest encompass designing new proteins, analyzing protein structures and obtaining new first-principles data -- natural vibrational frequencies -- via physics simulations. The concerted effort of the system allows for powerful automated and synergistic design of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-objective materials problems and opens up new avenues for autonomous materials discovery and design.
Towards Physically Interpretable World Models: Meaningful Weakly Supervised Representations for Visual Trajectory Prediction
Deep learning models are increasingly employed for perception, prediction, and control in complex systems. Embedding physical knowledge into these models is crucial for achieving realistic and consistent outputs, a challenge often addressed by physics-informed machine learning. However, integrating physical knowledge with representation learning becomes difficult when dealing with high-dimensional observation data, such as images, particularly under conditions of incomplete or imprecise state information. To address this, we propose Physically Interpretable World Models, a novel architecture that aligns learned latent representations with real-world physical quantities. Our method combines a variational autoencoder with a dynamical model that incorporates unknown system parameters, enabling the discovery of physically meaningful representations. By employing weak supervision with interval-based constraints, our approach eliminates the reliance on ground-truth physical annotations. Experimental results demonstrate that our method improves the quality of learned representations while achieving accurate predictions of future states, advancing the field of representation learning in dynamic systems.
Accelerating Material Design with the Generative Toolkit for Scientific Discovery
With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses with the potential to impact material discovery broadly. We present the Generative Toolkit for Scientific Discovery (GT4SD). This extensible open-source library enables scientists, developers, and researchers to train and use state-of-the-art generative models to accelerate scientific discovery focused on material design.
MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
FlashMD: long-stride, universal prediction of molecular dynamics
Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
