- Many-body effects on high-harmonic generation in Hubbard ladders We show how many-body effects associated with background spin dynamics control the high-harmonic generation (HHG) in Mott insulators by analyzing the two-leg ladder Hubbard model. Spin dynamics activated by the interchain hopping t_y drastically modifies the HHG features. When two chains are decoupled (t_y=0), HHG originates from the dynamics of coherent doublon-holon pairs because of spin-charge separation. With increasing t_y, the doublon-holon pairs lose their coherence due to their interchain hopping and resultant spin-strings. Furthermore, the HHG signal from spin-polarons -- charges dressed by spin clouds -- leads to an additional plateau in the HHG spectrum. For large t_y, we identify unconventional HHG processes involving three elementary excitations -- two polarons and one magnon. Our results demonstrate the nontrivial nature of HHG in strongly correlated systems, and its qualitative differences to conventional semiconductors. 5 authors · Jul 2, 2024
- Coherent shuttle of electron-spin states We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip. 5 authors · Jan 3, 2017
- Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices. 8 authors · Jul 31, 2024
1 Spin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width. 1 authors · Nov 2, 2022
- Controlled longitudinal spin-orbit separation of complex vector modes Complex vector modes, entangled in spin and orbital angular momentum, are opening burgeoning opportunities for a wide variety of applications. Importantly, the flexible manipulation the various properties of such beams will pave the way to novel applications. As such, in this manuscript, we demonstrate a longitudinal spin-orbit separation of complex vector modes propagating in free space. To achieve this we employed the recently demonstrated circular Airy Gaussian vortex vector (CAGVV) modes, which feature a self-focusing property. More precisely, by properly manipulating the intrinsic parameters of CAGVV modes, the strong coupling between the two constituting orthogonal components of CAGVV mode undergo a spin-orbit separation along the propagation direction namely, while one polarisation component, focuses at a specific plane, the other focuses at a different plane. Such spin-orbit separation, which we demonstrated by numerical simulations and corroborated experimentally, can be adjusted on-demand by simply changing the initial parameters of CAGVV modes. Our findings will be of great relevance, for example in optical tweezers, to manipulate micro- or nano-particles at two different parallel planes. 4 authors · Jan 31, 2023
- Predication of novel effects in rotational nuclei at high speed The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field. 1 authors · Sep 1, 2023
- CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs. 7 authors · Feb 27, 2023
- Comments on Fermi Liquid from Holography We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling. 2 authors · Aug 28, 2008
- Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the U(1) degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous U(1) system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions. 4 authors · Dec 14, 2022
- Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite. 4 authors · Dec 30, 2016
- Alternative harmonic detection approach for quantitative determination of spin and orbital torques In this study, the spin-orbit torque (SOT) in light metal oxide systems is investigated using an experimental approach based on harmonic Hall voltage techniques in out-of-plane (OOP) angular geometry for samples with in-plane magnetic anisotropy. In parallel, an analytical derivation of this alternative OOP harmonic Hall detection geometry has been developed, followed by experimental validation to extract SOT effective fields. In addition, to accurately quantifying SOT, this method allows complete characterization of thermoelectric effects, opening promising avenues for accurate SOT characterization in related systems. In particular, this study corroborates the critical role of naturally oxidized copper interfaced with metallic Cu in the generation of orbital current in Co(2)|Pt(4)|CuOx(3), demonstrating a two-fold increase in damping-like torques compared to a reference sample with an oxidized Al capping layer. These findings offer promising directions for future research on the application aspect of non-equilibrium orbital angular momentum. 9 authors · Dec 31, 2024
- Polariton Enhanced Free Charge Carrier Generation in Donor-Acceptor Cavity Systems by a Second-Hybridization Mechanism Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves that polaritons with proper energy levels allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation. 4 authors · Oct 3, 2022
- Sub-second spin and lifetime-limited optical coherences in ^{171}Yb^{3+}:CaWO_4 Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce ^{171}Yb^{3+} ions doped into a CaWO_4 crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of ^{171}Yb^{3+}:CaWO_4 as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits. 11 authors · Apr 2, 2025
- Nuclear spin-lattice relaxation time in UCoGe The NMR measurements performed on a single orthorhombic crystal of superconducting ferromagnet UCoGe (Y.Ihara et al, Phys. Rev. Lett. v.105, 206403 (2010)) demonstrate strongly anisotropic magnetic properties of this material. The presented calculations allow to establish the dependence of longitudinal spin-lattice relaxation rate from temperature and magnetic field. The value 1/T_1T in field perpendicular to spontaneous magnetisation directed along c-axis has maximum in vicinity of Curie temperature whereas it does not reveal similar behaviour in field parallel to the direction of spontaneous magnetisation. Also there was shown that the longitudinal spin-lattice relaxation rate is strongly field dependent when the field directed in b-crystallographic direction but field independent if magnetic field is oriented along a-axis. 1 authors · Jun 21, 2021
- Assembly and coherent control of a register of nuclear spin qubits We introduce an optical tweezer platform for assembling and individually manipulating a two-dimensional register of nuclear spin qubits. Each nuclear spin qubit is encoded in the ground ^{1}S_{0} manifold of ^{87}Sr and is individually manipulated by site-selective addressing beams. We observe that spin relaxation is negligible after 5 seconds, indicating that T_1gg5 s. Furthermore, utilizing simultaneous manipulation of subsets of qubits, we demonstrate significant phase coherence over the entire register, estimating T_2^star = left(21pm7right) s and measuring T_2^echo=left(42pm6right) s. 21 authors · Aug 10, 2021
- Magnetic properties of the quasi-one-dimensional S = 1 spin chain antiferromagnet BaNiTe2O7 We report a quasi-one-dimensional S = 1 spin chain compound BaNiTe2O7. This magnetic system has been investigated by magnetic susceptibility, specific heat, and neutron powder diffraction. These results indicate that BaNiTe2O7 develops a short-range magnetic correlation around T ~ 22 K. With further cooling, an antiferromagnetic phase transition is observed at TN ~ 5.4 K. Neutron powder diffraction revealed antiferromagnetic noncollinear order with a commensurate propagation vector k = (1/2, 1, 0). The refined magnetic moment size of Ni2+ at 1.5 K is 1.84{\mu}B, and its noncollinear spin texture is confirmed by first-principles calculations. Inelastic neutron-scattering results and density functional theory calculations confirmed the quasi-one-dimensional nature of the spin systems. 17 authors · Oct 1, 2023
- Extracting inter-dot tunnel couplings between few donor quantum dots in silicon The long term scaling prospects for solid-state quantum computing architectures relies heavily on the ability to simply and reliably measure and control the coherent electron interaction strength, known as the tunnel coupling, t_c. Here, we describe a method to extract the t_c between two quantum dots (QDs) utilising their different tunnel rates to a reservoir. We demonstrate the technique on a few donor triple QD tunnel coupled to a nearby single-electron transistor (SET) in silicon. The device was patterned using scanning tunneling microscopy-hydrogen lithography allowing for a direct measurement of the tunnel coupling for a given inter-dot distance. We extract {t}_{{c}}=5.5pm 1.8;{GHz} and {t}_{{c}}=2.2pm 1.3;{GHz} between each of the nearest-neighbour QDs which are separated by 14.5 nm and 14.0 nm, respectively. The technique allows for an accurate measurement of t_c for nanoscale devices even when it is smaller than the electron temperature and is an ideal characterisation tool for multi-dot systems with a charge sensor. 7 authors · Jun 2, 2016
- Shubnikov-de Haas Oscillations in 2D PtSe_2: A fermiological Charge Carrier Investigation High magnetic field and low temperature transport is carried out in order to characterize the charge carriers of PtSe_2. In particular, the Shubnikov-de Haas oscillations arising at applied magnetic field strengths gtrsim 4.5,T are found to occur exclusively in plane and emerge at a layer thickness of approx 18,nm, increasing in amplitude and decreasing in frequency for thinner PtSe_2 flakes. Moreover, the quantum transport time, Berry phase, Dingle temperature and cyclotron mass of the charge carriers are ascertained. The emergence of weak antilocalization (WAL) lies in contrast to the presence of magnetic moments from Pt vacancies. An explanation is provided on how WAL and the Kondo effect can be observed within the same material. Detailed information about the charge carriers and transport phenomena in PtSe_2 is obtained, which is relevant for the design of prospective spintronic and orbitronic devices and for the realization of orbital Hall effect-based architectures. 4 authors · May 21, 2025
- Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics We propose a quantum repeater architecture that can operate under ambient conditions. Our proposal builds on recent progress towards non-cryogenic spin-photon interfaces based on nitrogen-vacancy centers, which have excellent spin coherence times even at room temperature, and optomechanics, which allows to avoid phonon-related decoherence and also allows the emitted photons to be in the telecom band. We apply the photon number decomposition method to quantify the fidelity and the efficiency of entanglement established between two remote electron spins. We describe how the entanglement can be stored in nuclear spins and extended to long distances via quasi-deterministic entanglement swapping operations involving the electron and nuclear spins. We furthermore propose schemes to achieve high-fidelity readout of the spin states at room temperature using the spin-optomechanics interface. Our work shows that long-distance quantum networks made of solid-state components that operate at room temperature are within reach of current technological capabilities. 6 authors · Dec 11, 2020
- Multi-state quantum simulations via model-space quantum imaginary time evolution We introduce the framework of model space into quantum imaginary time evolution (QITE) to enable stable estimation of ground and excited states using a quantum computer. Model-space QITE (MSQITE) propagates a model space to the exact one by retaining its orthogonality, and hence is able to describe multiple states simultaneously. The quantum Lanczos (QLanczos) algorithm is extended to MSQITE to accelerate the convergence. The present scheme is found to outperform both the standard QLanczos and the recently proposed folded-spectrum QITE in simulating excited states. Moreover, we demonstrate that spin contamination can be effectively removed by shifting the imaginary time propagator, and thus excited states with a particular spin quantum number are efficiently captured without falling into the different spin states that have lower energies. We also investigate how different levels of the unitary approximation employed in MSQITE can affect the results. The effectiveness of the algorithm over QITE is demonstrated by noise simulations for the H4 model system. 4 authors · Jun 9, 2022
- On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}. 9 authors · Aug 8, 2021
1 A Vector-Based Algorithm for Generating Complete Balanced Reaction Sets with Arbitrary Numbers of Reagents We present a vector-based method to balance chemical reactions. The algorithm builds candidates in a deterministic way, removes duplicates, and always prints coefficients in the lowest whole-number form. For redox cases, electrons and protons/hydroxide are treated explicitly, so both mass and charge are balanced. We also outline the basic principles of the vector formulation of stoichiometry, interpreting reactions as integer vectors in composition space, this geometric view supports compact visualizations of reagent-product interactions and helps surface distinct reaction families. The method enumerates valid balances for arbitrary user-specified species lists without special-case balancing rules or symbolic tricks, and it provides a clean foundation for developing new algorithmic variants (e.g., alternative objectives or constraints). On representative examples (neutralization, double displacement, decomposition, classical redox, small multicomponent sets) and a negative control, the method produced correct integer balances. When multiple balances exist, we report a canonical one - minimizing the total coefficient sum with a simple tie-breaker - without claiming global optimality beyond the solutions the search enumerates. The procedure applies per reaction and extends to reaction networks via consistent per-reaction application. We do not report runtimes, broader benchmarking and code/data release are planned. 3 authors · Oct 29, 2025
- Ferromagnetic ordering in mazelike stripe liquid of a dipolar six-state clock model We present a comprehensive numerical study of a six-state clock model with a long-range dipolar type interaction. This model is motivated by the ferroelectric orders in the multiferroic hexagonal manganites. At low temperatures, trimerization of local atomic structures leads to six distinct but energetically degenerate structural distortion, which can be modeled by a six-state clock model. Moreover, the atomic displacements in the trimerized state further produce a local electric polarization whose sign depends on whether the clock variable is even or odd. These induced electric dipoles, which can be modeled by emergent Ising degrees of freedom, interact with each other via long-range dipolar interactions. Extensive Monte Carlo simulations are carried out to investigate low temperature phases resulting from the competing interactions. Upon lowering temperature, the system undergoes two Berezinskii-Kosterlitz-Thouless (BKT) transitions, characteristic of the standard six-state clock model in two dimensions. The dipolar interaction between emergent Ising spins induces a first-order transition into a ground state characterized by a three-fold degenerate stripe order. The intermediate phase between the discontinuous and the second BKT transition corresponds to a maze-like hexagonal liquid with short-range stripe ordering. Moreover, this intermediate phase also exhibits an unusual ferromagnetic order with two adjacent clock variables occupying the two types of stripes of the labyrinthine pattern. 3 authors · Dec 12, 2024
- Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently. 1 authors · Sep 1, 2023
- Ultra-sensitive solid-state organic molecular microwave quantum receiver High-accuracy microwave sensing is widely demanded in various fields, ranging from cosmology to microwave quantum technology. Quantum receivers based on inorganic solid-state spin systems are promising candidates for such purpose because of the stability and compatibility, but their best sensitivity is currently limited to a few pT/rm{Hz}. Here, by utilising an enhanced readout scheme with the state-of-the-art solid-state maser technology, we develop a robust microwave quantum receiver functioned by organic molecular spins at ambient conditions. Owing to the maser amplification, the sensitivity of the receiver achieves 6.14 pm 0.17 fT/rm{Hz} which exceeds three orders of magnitude than that of the inorganic solid-state quantum receivers. The heterodyne detection without additional local oscillators improves bandwidth of the receiver and allows frequency detection. The scheme can be extended to other solid-state spin systems without complicated control pulses and thus enables practical applications such as electron spin resonance spectroscopy, dark matter searches, and astronomical observations. 12 authors · May 23, 2024
- Statistics of X-Ray Polarization Measurements The polarization of an X-ray beam that produces electrons with velocity components perpendicular to the beam generates an azimuthal distribution of the ejected electrons. We present methods for simulating and for analyzing the angular dependence of electron detections which enable us to derive simple analytical expressions for useful statistical properties of observable data. The derivations are verified by simulations. While we confirm the results of previous work on this topic, we provide an extension needed for analytical treatment of the full range of possible polarization amplitudes. 2 authors · Jan 9, 2015
- Characterisation of three-body loss in {}^{166}Er and optimised production of large Bose-Einstein condensates Ultracold gases of highly magnetic lanthanide atoms have enabled the realisation of dipolar quantum droplets and supersolids. However, future studies could be limited by the achievable atom numbers and hindered by high three-body loss rates. Here we study density-dependent atom loss in an ultracold gas of {}^{166}Er for magnetic fields below 4 G, identifying six previously unreported, strongly temperature-dependent features. We find that their positions and widths show a linear temperature dependence up to at least 15,muK. In addition, we observe a weak, polarisation-dependent shift of the loss features with the intensity of the light used to optically trap the atoms. This detailed knowledge of the loss landscape allows us to optimise the production of dipolar BECs with more than 2 times 10^5 atoms and points towards optimal strategies for the study of large-atom-number dipolar gases in the droplet and supersolid regimes. 7 authors · Jul 3, 2023
- A photonic cluster state machine gun We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing. 2 authors · Oct 14, 2008
- Measurement of the electric dipole moment of AlCl We report the measurement of the electric dipole moment of aluminum monochloride (AlCl) using a cryogenic buffer-gas beam source. Our measurements provide values for the dipole moments of the two lowest vibrational states of the X^1Sigma^+ and the A^1Pi electronic states. We also show that spin-orbit coupling with an extended number of spin states is essential in the ab initio calculation to correctly describe both the dipole moment and the Te energy of AlCl. We further lay out the implications of these results for astrophysical models of stellar and planetary evolution that have used a substitute value for the dipole moment of AlCl until now. 5 authors · Mar 17, 2025
- Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware. 7 authors · Apr 17, 2017
- High spin axion insulator Axion insulators possess a quantized axion field theta=pi protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field theta=(s+1/2)^2pi. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field theta can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications. 5 authors · Apr 18, 2024
- Quantum simulation of generic spin exchange models in Floquet-engineered Rydberg atom arrays Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting via Rydberg states - a platform potentially capable of simulating any kind of spin exchange model, albeit with currently unattainable experimental capabilities. Here, we propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control. To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays, using only previously-demonstrated experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a path to investigate a large class of exotic quantum spin models. 5 authors · Jun 12, 2023
1 Three-level Dicke quantum battery Quantum battery (QB) is the energy storage and extraction device that is governed by the principles of quantum mechanics. Here we propose a three-level Dicke QB and investigate its charging process by considering three quantum optical states: a Fock state, a coherent state, and a squeezed state. The performance of the QB in a coherent state is substantially improved compared to a Fock and squeezed states. We find that the locked energy is positively related to the entanglement between the charger and the battery, and diminishing the entanglement leads to the enhancement of the ergotropy. We demonstrate the QB system is asymptotically free as N rightarrow infty. The stored energy becomes fully extractable when N=10, and the charging power follows the consistent behavior as the stored energy, independent of the initial state of the charger. 3 authors · Aug 2, 2023
- Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: measuring a circular-polarization mode The Stokes V parameter characterizes asymmetry of amplitudes between right- and left-handed waves, and non-vanishing value of the V parameter yields a circularly polarized signal. Cosmologically, V parameter may be a direct probe for parity violation in the universe. In this paper, we theoretically investigate a measurement of this parameter, particularly focusing on the gravitational-wave backgrounds observed via ground-based interferometers. In contrast to the traditional analysis that only considers the total amplitude (or equivalently Omega_{GW}), the signal analysis including a circular-polarized mode has a rich structure due to the multi-dimensionality of target parameters. We show that, by using the network of next-generation detectors, separation between polarized and unpolarized modes can be performed with small statistical loss induced by their correlation. 2 authors · Jan 27, 2008
- Chiral effects and Joule heating in hot and dense matter Initial states of dense matter with nonzero electron chiral imbalance could potentially give rise to strong magnetic fields through chiral plasma instability. Previous work indicated that unless chiral chemical potential is as large as the electron vector chemical potential, the growth of magnetic fields due to the instability is washed out by chirality flipping rate enabled by electron mass. We re-examine this claim in a broader range of parameters and find that at higher temperatures the hierarchy is reversed supporting a growing magnetic field for an initial electron chiral chemical potential much smaller than the electron vector chemical potential. Further, we identify a qualitatively new effect relevant for magnetized hot and dense medium where chiral magnetic effect (CME) sourced by density fluctuation acts as a powerful source of Joule heating. Remarkably, even modest chiral chemical potentials (keV) in such environment can deposit energy densities set by the QCD scale in a relatively short time of the order of a few milliseconds or seconds. We speculate how this mechanism makes CME-driven Joule heating a potentially critical ingredient in the dynamics of turbulent density fluctuation of supernovae and neutron star mergers. 2 authors · Sep 30, 2025
- Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies Kerr nonlinear oscillators driven by a two-photon process are promising systems to encode quantum information and to ensure a hardware-efficient scaling towards fault-tolerant quantum computation. In this paper, we show that an extra control parameter, the detuning of the two-photon drive with respect to the oscillator resonance, plays a crucial role in the properties of the defined qubit. At specific values of this detuning, we benefit from strong symmetries in the system, leading to multiple degeneracies in the spectrum of the effective confinement Hamiltonian. Overall, these degeneracies lead to a stronger suppression of bit-flip errors. We also study the combination of such Hamiltonian confinement with colored dissipation to suppress leakage outside of the bosonic code space. We show that the additional degeneracies allow us to perform fast and high-fidelity gates while preserving a strong suppression of bit-flip errors. 4 authors · Nov 7, 2022
- Matters Arising from S. Vaitiekenas et al., "Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires" Nature Physics 2021 In 2021 Nature Physics published a paper by Vaitiekenas, Liu, Krogstrup and Marcus titled "Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires". The paper reports low temperature transport measurements on semiconductor InAs nanowires with two partly overlapping shells -- a shell of EuS, a magnetic insulator, and a shell of Al, a metal that becomes superconducting at temperatures below 1.2K. The paper claims that (1) the data are consistent with induced topological superconductivity and Majorana zero modes (MZMs), and (2) that this is facilitated by the breaking of the time reversal symmetry through a direct magnetic interaction with the EuS shell. In this Matters Arising, we present an alternative explanation which is based on trivial effects that are likely to appear in the reported geometry. Specifically, first, we find that data the authors present in support of the topological superconductivity claim can originate from unintended quantum dots in their devices, a widely known likely explanation that is not being discussed in the paper. Second, our analysis of the setup, supported by our numerical micromagnetic simulations, shows similar effects could be obtained due to stray magnetic fields from the region of the EuS shell damaged during Al etching. This basic picture should come before the exotic interpretation in terms of magnetic exchange interaction with a ferromagnetic insulator. 6 authors · Jan 7, 2025
- Oxidation State Dynamics and Emerging Patterns in Magnetite Magnetite is an important mineral with many interesting applications related to its magnetic, electrical and thermal properties. Typically studied by electronic structure calculations, these methods are unable to capture the complex ion dynamics at relevant temperatures, time and length scales. We present a hybrid Monte Carlo/Molecular Dynamics (MC/MD) method based on iron oxidation state exchange for accurate atomistic modelling of bulk magnetite, magnetite surfaces and nanoparticles that captures the complex ionic dynamics. By comparing oxidation state patterns with those obtained from density functional theory, we confirmed the accuracy of our approach. Lattice distortions leading to the stabilisation of excess charges and a critical surface thickness at which the oxidation states transition from ordered to disordered were observed. This simple yet efficient approach paves the way for elucidating aspects of oxidation state ordering of inverse spinel structures in general and battery materials in particular. 3 authors · Oct 20, 2025
- Precision measurement of the last bound states in H_2 and determination of the H + H scattering length The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed. 3 authors · Feb 3, 2025
- Uniform structural phase transition in V_2O_3 without short-range distortions of the local structure The local structure of V_{2}O_{3}, an archetypal strongly correlated electron system that displays a metal-insulator transition around 160 K, has been investigated via pair distribution function (PDF) analysis of neutron and x-ray total scattering data. The rhombohedral-to-monoclinic structural phase transition manifests as an abrupt change on all length scales in the observed PDF. No monoclinic distortions of the local structure are found above the transition, although coexisting regions of phase-separated rhombohedral and monoclinic symmetry are observed between 150 K and 160 K. This lack of structural fluctuations above the transition contrasts with the known presence of magnetic fluctuations in the high-temperature state, suggesting that the lattice degree of freedom plays a secondary role behind the spin degree of freedom in the transition mechanism. 5 authors · Sep 9, 2021
1 Algorithms for the Markov Entropy Decomposition The Markov entropy decomposition (MED) is a recently-proposed, cluster-based simulation method for finite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for performing the required steps of the MED, principally solving a minimization problem with a preconditioned Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate the power of the method with the spin-1/2 XXZ model on the 2D square lattice, including the extraction of critical points and details of each phase. Although the method shares some qualitative similarities with exact-diagonalization, we show the MED is both more accurate and significantly more flexible. 2 authors · Dec 6, 2012
- Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties. 4 authors · May 27, 2024
- PauliComposer: Compute Tensor Products of Pauli Matrices Efficiently We introduce a simple algorithm that efficiently computes tensor products of Pauli matrices. This is done by tailoring the calculations to this specific case, which allows to avoid unnecessary calculations. The strength of this strategy is benchmarked against state-of-the-art techniques, showing a remarkable acceleration. As a side product, we provide an optimized method for one key calculus in quantum simulations: the Pauli basis decomposition of Hamiltonians. 2 authors · Jan 2, 2023
- Gate-tunable Exchange Bias and Voltage-controlled Magnetization Switching in a van der Waals Ferromagnet The discovery of van der Waals magnets has established a new domain in the field of magnetism, opening novel pathways for the electrical control of magnetic properties. In this context, Fe3GeTe2 (FGT) emerges as an exemplary candidate owing to its intrinsic metallic properties, which facilitate the interplay of both charge and spin degrees of freedom. Here, the bidirectional voltage control of exchange bias (EB) effect in a perpendicularly magnetized all-van der Waals FGT/O-FGT/hBN heterostructure is demonstrated. The antiferromagnetic O-FGT layer is formed by naturally oxidizing the FGT surface. The observed EB magnitude reaches 1.4 kOe with a blocking temperature (150 K) reaching close to the Curie temperature of FGT. Both the exchange field and the blocking temperature values are among the highest in the context of layered materials. The EB modulation exhibits a linear dependence on the gate voltage and its polarity, observable in both positive and negative field cooling (FC) experiments. Additionally, gate voltage-controlled magnetization switching, highlighting the potential of FGT-based heterostructures is demonstrated in advanced spintronic devices. These findings display a methodology to modulate the magnetism of van der Waals magnets offering new avenues for the development of high-performance magnetic devices. 8 authors · Nov 27, 2024
1 Magnetic correction to the Anomalous Magnetic Moment of Electron We investigate the leading order correction of anomalous magnetic moment (AMM) to the electron in weak magnetic field and find that the magnetic correction is negative and magnetic field dependent, indicating a magnetic catalysis effect for the electron gas. In the laboratory to measure the g-2, the magnitude of the magnetic field B is several T, correspondingly the magnetic correction to the AMM of electron/muon is around 10^{-34}/10^{-42}, therefore the magnetic correction can be safely neglected in current measurement. However, when the magnitude of the magnetic field strength is comparable with the electron mass, the magnetic correction of electron's AMM will become considerable. This general magnetic correction to charged fermion's AMM can be extended to study QCD matter under strong magnetic field. 2 authors · Dec 2, 2021
- Single replica spin-glass phase detection using field variation and machine learning The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples. 4 authors · Nov 7, 2024
- Two-photon interference: the Hong-Ou-Mandel effect Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades. 8 authors · Jun 16, 2020
- Condensed matter and AdS/CFT I review two classes of strong coupling problems in condensed matter physics, and describe insights gained by application of the AdS/CFT correspondence. The first class concerns non-zero temperature dynamics and transport in the vicinity of quantum critical points described by relativistic field theories. I describe how relativistic structures arise in models of physical interest, present results for their quantum critical crossover functions and magneto-thermoelectric hydrodynamics. The second class concerns symmetry breaking transitions of two-dimensional systems in the presence of gapless electronic excitations at isolated points or along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling structure of a recent theory of the Ising-nematic transition in metals, and discuss its possible connection to theories of Fermi surfaces obtained from simple AdS duals. 1 authors · Feb 16, 2010
- A unified diagrammatic approach to quantum transport in few-level junctions for bosonic and fermionic reservoirs: Application to the quantum Rabi model We apply the Nakajima-Zwanzig approach to open quantum systems to study steady-state transport across generic multi-level junctions coupled to bosonic or fermionic reservoirs. The method allows for a unified diagrammatic formulation in Liouville space, with diagrams being classified according to an expansion in the coupling strength between the reservoirs and the junction. Analytical, approximate expressions are provided up to fourth order for the steady-state boson transport that generalize to multi-level systems the known results for the low-temperature thermal conductance in the spin-boson model. The formalism is applied to the problem of heat transport in a qubit-resonator junction modeled by the quantum Rabi model. Nontrivial transport features emerge as a result of the interplay between the qubit-oscillator detuning and coupling strength. For quasi-degenerate spectra, nonvanishing steady-state coherences cause a suppression of the thermal conductance. 3 authors · Mar 11, 2024
- Phase diagram of a three-dimensional dipolar model on a FCC lattice The magnetic phase diagram at zero external field of an ensemble of dipoles with uniaxial anisotropy on a FCC lattice is investigated from tempered Monte Carlo simulations. The uniaxial anisotropy is characterized by a random distribution of easy axes and its magnitude lambda_u is the driving force of disorder and consequently frustration. The phase diagram, separating the paramagnetic, ferromagnetic, quasi long range ordered ferromagnetic and spin-glass regions is thus considered in the temperature, lambda_u plane. This system is aimed at modeling the magnetic phase diagram of supracrystals of magnetic nanoparticles. 7 authors · Nov 2, 2020
- Holographic entanglement entropy and the internal space We elaborate on the role of extremal surfaces probing the internal space in AdS/CFT. Extremal surfaces in AdS quantify the "geometric" entanglement between different regions in physical space for the dual CFT. This, however, is just one of many ways to split a given system into subsectors, and extremal surfaces in the internal space should similarly quantify entanglement between subsectors of the theory. For the case of AdS_5timesS^5, their area was interpreted as entanglement entropy between U(n) and U(m) subsectors of U(n+m) N=4 SYM. Making this proposal precise is subtle for a number of reasons, the most obvious being that from the bulk one usually has access to gauge-invariant quantities only, while a split into subgroups is inherently gauge variant. We study N=4 SYM on the Coulomb branch, where some of the issues can be mitigated and the proposal can be sharpened. Continuing back to the original AdS_5timesS^5 geometry, we obtain a modified proposal, based on the relation of the internal space to the R-symmetry group. 2 authors · Dec 30, 2014
- Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained. Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the point-group symmetry and the lack of translation symmetry on this lattice. Firstly, the spin and spacial angular momenta of a Cooper pair is de-correlated: for each pairing symmetry, both spin-singlet and spin-triplet pairings are possible even in the weak-pairing limit. Secondly, the pairing states belonging to the 2D irreducible representations of the D_5 point group can be time-reversal-symmetry-breaking topological SCs carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of unconventional SCs driven by repulsive interactions on the QC. 6 authors · Jan 20, 2020
- Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid. 3 authors · Aug 2, 2024
- Landau theory description of autferroicity Autferroics, recently proposed as a sister branch of multiferroics, exhibit strong intrinsic magnetoelectricity, but ferroelectricity and magnetism are mutually exclusive rather than coexisting. Here, a general model is considered based on the Landau theory, to clarify the distinction between multi and autferroics by qualitative change-rotation in Landau free energy landscape and in particular phase mapping. The TiGeSe_3 exemplifies a factual material, whose first-principles computed Landau coefficients predict its autferroicity. Our investigations pave the way for an alternative avenue in the pursuit of intrinsically strong magnetoelectrics. 3 authors · May 3, 2025
- Metallic AdS/CFT We use the AdS/CFT correspondence to compute the conductivity of massive N=2 hypermultiplet fields at finite baryon number density in an N=4 SU(N_c) super-Yang-Mills theory plasma in the large N_c, large 't Hooft coupling limit. The finite baryon density provides charge carriers analogous to electrons in a metal. An external electric field then induces a finite current which we determine directly. Our result for the conductivity is good for all values of the mass, external field and density, modulo statements about the yet-incomplete phase diagram. In the appropriate limits it agrees with known results obtained from analyzing small fluctuations around equilibrium. For large mass, where we expect a good quasi-particle description, we compute the drag force on the charge carriers and find that the answer is unchanged from the zero density case. Our method easily generalizes to a wide class of systems of probe branes in various backgrounds. 2 authors · May 25, 2007
- Observation of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 in the B^- rightarrow D^- D^0 K_S^0 decay An amplitude analysis of B^-rightarrow D^- D^0 K_S^0 decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 9,fb^{-1}, collected with the LHCb detector at center-of-mass energies of 7, 8, and 13,Tekern -0.1em V. A resonant structure of spin-parity 0^+ is observed in the D^0 K_S^0 invariant-mass spectrum with a significance of 5.3,sigma. The mass and width of the state, modeled with a Breit-Wigner lineshape, are determined to be 2883pm11pm6,Mekern -0.1em V!/c^2 and 87_{-47}^{+22}pm6,Mekern -0.1em V respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 observed previously in the D^+ K^- final state of the B^-rightarrow D^- D^+ K^- decay. This result confirms the existence of the T_{cs 0}^{*}(2870)^0 state in a new decay mode. The T_{cs1}^{*}(2900)^0 state, reported in the B^-rightarrow D^- D^+ K^- decay, is also searched for in the D^0 K_S^0 invariant-mass spectrum of the B^- rightarrow D^- D^0 K_S^0 decay, without finding evidence for it. 1153 authors · Nov 29, 2024
1 Neuromorphic Spintronics Neuromorphic spintronics combines two advanced fields in technology, neuromorphic computing and spintronics, to create brain-inspired, efficient computing systems that leverage the unique properties of the electron's spin. In this book chapter, we first introduce both fields - neuromorphic computing and spintronics and then make a case for neuromorphic spintronics. We discuss concrete examples of neuromorphic spintronics, including computing based on fluctuations, artificial neural networks, and reservoir computing, highlighting their potential to revolutionize computational efficiency and functionality. 2 authors · Sep 16, 2024
1 Unbalanced Stückelberg Holographic Superconductors with Backreaction We numerically investigate some properties of unbalanced St\"{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St\"{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St\"{u}ckelberg's model parameters C_{alpha} and alpha not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of alpha on the amplitude of conductivity fluctuations depends on the magnitude of the both C_{alpha} and deltamu/mu in the electric and thermal conductivity cases. This results in that increasing alpha can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones. 2 authors · Aug 8, 2018
- The enigma of the pseudogap phase of the cuprate superconductors The last few years have seen significant experimental progress in characterizing the copper-based hole-doped high temperature superconductors in the regime of low hole density, p. Quantum oscillations, NMR, X-ray, and STM experiments have shed much light on the nature of the ordering at low temperatures. We review evidence that the order parameter in the non-Lanthanum-based cuprates is a d-form factor density-wave. This novel order acts as an unexpected window into the electronic structure of the pseudogap phase at higher temperatures in zero field: we argue in favor of a `fractionalized Fermi liquid' (FL*) with 4 pockets of spin S=1/2, charge +e fermions enclosing an area specified by p. 2 authors · Dec 30, 2014 1
- Analytical Correlation in the H_{2} Molecule from the Independent Atom Ansatz The independent atom ansatz of density functional theory yields an accurate analytical expression for dynamic correlation energy in the H_{2} molecule: E_{c} = 0.5(1 - 2)(ab|ba) for the atom-additive self-consistent density rho = |a|^{2} + |b|^{2}. Combined with exact atomic self-exchange, it recovers more than 99.5 % of nearly exact SCAN exchange-correlation energy at R > 0.5 A, differing by less than 0.12 eV. The total energy functional correctly dissociates the H-H bond and yields absolute errors of 0.002 A, 0.19 eV, and 13 cm^{-1} relative to experiment at the tight binding computational cost. The chemical bond formation is attributed to the asymptotic Heitler-London resonance of quasi-orthogonal atomic states (- (ab|ba)) with no contributions from kinetic energy or charge accumulation in the bond. 2 authors · May 20, 2024
- AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semi-circle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the DC ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero DC conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semi-circle transitions between them. The model can be regarded as a strongly coupled analog of the old `composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model. 4 authors · Aug 11, 2010
- Holographic Superconductors It has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged scalar. We review our earlier analysis of this theory and extend it in two directions. First, we consider all values for the charge of the scalar field. Away from the large charge limit, backreaction on the spacetime metric is important. While the qualitative behaviour of the dual superconductor is found to be similar for all charges, in the limit of arbitrarily small charge a new type of black hole instability is found. We go on to add a perpendicular magnetic field B and obtain the London equation and magnetic penetration depth. We show that these holographic superconductors are Type II, i.e., starting in a normal phase at large B and low temperatures, they develop superconducting droplets as B is reduced. 3 authors · Oct 8, 2008
- Matrix approach to generalized ensemble theory We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems. 1 authors · Mar 22, 2025
- Simulating the two-dimensional t-J model at finite doping with neural quantum states Simulating large, strongly interacting fermionic systems remains a major challenge for existing numerical methods. In this work, we present, for the first time, the application of neural quantum states - specifically, hidden fermion determinant states (HFDS) - to simulate the strongly interacting limit of the Fermi-Hubbard model, namely the t-J model, across the entire doping regime. We demonstrate that HFDS achieve energies competitive with matrix product states (MPS) on lattices as large as 8 times 8 sites while using several orders of magnitude fewer parameters, suggesting the potential for efficient application to even larger system sizes. This remarkable efficiency enables us to probe low-energy physics across the full doping range, providing new insights into the competition between kinetic and magnetic interactions and the nature of emergent quasiparticles. Starting from the low-doping regime, where magnetic polarons dominate the low energy physics, we track their evolution with increasing doping through analyses of spin and polaron correlation functions. Our findings demonstrate the potential of determinant-based neural quantum states with inherent fermionic sign structure, opening the way for simulating large-scale fermionic systems at any particle filling. 4 authors · Nov 15, 2024
- Quantum Geometric Tensor for Mixed States Based on the Covariant Derivative The quantum geometric tensor (QGT) is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena. The traditional QGT, defined only for pure states, has limited applicability in realistic scenarios where mixed states are common. To address this limitation, we generalize the definition of the QGT to mixed states using the purification bundle and the covariant derivative. Notably, our proposed definition reduces to the traditional QGT when mixed states approach pure states. In our framework, the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature, respectively, endowing it with a broad range of potential applications. Additionally, using our proposed mixed-state QGT (MSQGT), we derive the geodesic equation applicable to mixed states. This work establishes a unified framework for the geometric analysis of both pure and mixed states, thereby deepening our understanding of the geometric properties of quantum states. 4 authors · May 30, 2025
- Excitonic phases in a spatially separated electron-hole ladder model We obtain the numerical ground state of a one-dimensional ladder model with the upper and lower chains occupied by spatially-separated electrons and holes, respectively. Under charge neutrality, we find that the excitonic bound states are always formed, i.e., no finite regime of decoupled electron and hole plasma exists at zero temperature. The system either behaves like a bosonic liquid or a bosonic crystal depending on the inter-chain attractive and intra-chain repulsive interaction strengths. We also provide the detailed excitonic phase diagrams in the intra- and inter-chain interaction parameters, with and without disorder. We also comment on the corresponding two-dimensional electron-hole bilayer exciton condensation. 2 authors · May 25, 2023
- Electric Penrose process and the accretion disk around a 4D charged Einstein-Gauss-Bonnet black hole In this paper, we aim to examine the electric Penrose process (PP) around a charged black hole in 4D Einstein-Gauss-Bonnet (EGB) gravity and bring out the effect of the Gauss-Bonnet (GB) coupling parameter alpha and black hole charge on the efficiency of the energy extraction from the black hole. This research is motivated by the fact that electrostatic interactions significantly influence the behavior of charged particles in the vicinity of a charged static black hole. Under this interaction, decaying charged particles can have negative energies, causing energy to be released from black holes with no ergosphere. We show that the GB coupling parameter has a significant impact on the energy efficiency of the electric PP, but the efficiency can be strongly enhanced by the black hole charge due to the Coulomb force. Finally, we consider the accretion disk around the black hole and investigate in detail its radiation properties, such as the electromagnetic radiation flux, the temperature, and the differential luminosity. We show that the GB coupling parameter can have a significant impact on the radiation parameters, causing them to increase in the accretion disk in the vicinity of the black hole. Interestingly, it is found that the 4D EGB charged black hole is more efficient and favorable for the accretion disk radiation compared to a charged black hole in Einstein gravity. 2 authors · Jul 31, 2024
- Equilibrium of Charges and Differential Equations Solved by Polynomials II We continue study of equilibrium of two species of 2d coulomb charges (or point vortices in 2d ideal fluid) started in Lv. Although for two species of vortices with circulation ratio -1 the relationship between the equilibria and the factorization/Darboux transformation of the Schrodinger operator was established a long ago, the question about similar relationship for the ratio -2 remained unanswered. Here we present the answer. 2 authors · Oct 2, 2024
- Entanglement Purification in Quantum Networks: Guaranteed Improvement and Optimal Time While the concept of entanglement purification protocols (EPPs) is straightforward, the integration of EPPs in network architectures requires careful performance evaluations and optimizations that take into account realistic conditions and imperfections, especially probabilistic entanglement generation and quantum memory decoherence. It is important to understand what is guaranteed to be improved from successful EPP with arbitrary non-identical input, which determines whether we want to perform the EPP at all. When successful EPP can offer improvement, the time to perform the EPP should also be optimized to maximize the improvement. In this work, we study the guaranteed improvement and optimal time for the CNOT-based recurrence EPP, previously shown to be optimal in various scenarios. We firstly prove guaranteed improvement for multiple figures of merit, including fidelity and several entanglement measures when compared to practical baselines as functions of input states. However, it is noteworthy that the guaranteed improvement we prove does not imply the universality of the EPP as introduced in arXiv:2407.21760. Then we prove robust, parameter-independent optimal time for typical error models and figures of merit. We further explore memory decoherence described by continuous-time Pauli channels, and demonstrate the phenomenon of optimal time transition when the memory decoherence error pattern changes. Our work deepens the understanding of EPP performance in realistic scenarios and offers insights into optimizing quantum networks that integrate EPPs. 5 authors · May 4, 2025
- One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy We address effects of spin-orbit coupling (SOC), phenomenologically added to a two-component Bose-Einstein condensate composed of particles moving by Levy flights, in one- and two-dimensional (1D and 2D) settings. The corresponding system of coupled Gross-Pitaevskii equations includes fractional kinetic-energy operators, characterized by the Levy index, \alpha < 2 (the normal kinetic energy corresponds to \alpha = 2). The SOC terms, with strength \lambda, produce strong effects in the 2D case: they create families of stable solitons of the semi-vortex (SV) and mixed-mode (MM) types in the interval of 1 < \alpha < 2, where the supercritical collapse does not admit the existence of stable solitons in the absence of the SOC. At \lambda --> 0, amplitudes of these solitons vanish as (\lambda)^{1/(\alpha - 1)}. 2 authors · Jun 1, 2022
- Doming and spin cascade in Ferric Haems: Femtosecond X-ray Absorption and X-ray Emission Studies The structure-function relationship is at the heart of biology and major protein deformations are correlated to specific functions. In the case of heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobin, while ruffling has been correlated with electron transfer processes, such as in the case of Cytochrome c (Cyt c). The latter has indeed evolved to become an important electron transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe K-edge X-ray absorption near-edge structure (XANES) studies and femtosecond Fe Kalpha and Kbeta X-ray emission spectroscopy (XES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the Iron ion, causing the ferric heme to undergo doming, which we identify for the first time. We also argue that this pattern is common to all ferric haems, raising the question of the biological relevance of doming in such proteins. 22 authors · Jun 1, 2020
- Detecting Fermi Surface Nesting Effect for Fermionic Dicke Transition by Trap Induced Localization Recently, the statistical effect of fermionic superradiance is approved by series of experiments both in free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of Dicke transition critical pumping strength against particle number Nat for fermions in a trap. However, the Fermi surface nesting effect, which manifests the enhancement of superradiance by Fermi statistics is still very hard to be identified. Here we studied the influence of localized fermions on the trap edge when both pumping optical lattice and the trap are presented. We find due to localization, the statistical effect in superradiant transition is enhanced. Two new scalings of critical pumping strength are observed as 4/3, and 2/3 for mediate particle number, and the Pauli blocking scaling 1/3 (2d case) in large particle number limit is unaffected. Further, we find the 4/3 scaling is subject to a power law increasing with rising ratio between recoil energy and trap frequency in pumping laser direction. The divergence of this scaling of critical pumping strength against N_{rm at} in E_R/omega_xrightarrow+infty limit can be identified as the Fermi surface nesting effect. Thus we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the help of trap induced localization in a two-dimensional Fermi gas in a cavity. 2 authors · Mar 1, 2023
- 1d-qt-ideal-solver: 1D Idealized Quantum Tunneling Solver with Absorbing Boundaries We present 1d-qt-ideal-solver, an open-source Python library for simulating one-dimensional quantum tunneling dynamics under idealized coherent conditions. The solver implements the split-operator method with second-order Trotter-Suzuki factorization, utilizing FFT-based spectral differentiation for the kinetic operator and complex absorbing potentials to eliminate boundary reflections. Numba just-in-time compilation achieves performance comparable to compiled languages while maintaining code accessibility. We validate the implementation through two canonical test cases: rectangular barriers modeling field emission through oxide layers and Gaussian barriers approximating scanning tunneling microscopy interactions. Both simulations achieve exceptional numerical fidelity with machine-precision energy conservation over femtosecond-scale propagation. Comparative analysis employing information-theoretic measures and nonparametric hypothesis tests reveals that rectangular barriers exhibit moderately higher transmission coefficients than Gaussian barriers in the over-barrier regime, though Jensen-Shannon divergence analysis indicates modest practical differences between geometries. Phase space analysis confirms complete decoherence when averaged over spatial-temporal domains. The library name reflects its scope: idealized signifies deliberate exclusion of dissipation, environmental coupling, and many-body interactions, limiting applicability to qualitative insights and pedagogical purposes rather than quantitative experimental predictions. Distributed under the MIT License, the library provides a deployable tool for teaching quantum mechanics and preliminary exploration of tunneling dynamics. 5 authors · Dec 27, 2025
- Notes on Properties of Holographic Strange Metals We investigate properties of holographic strange metals in p+2-dimensions, generalizing the analysis performed in arXiv:0912.1061. The bulk spacetime is p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density, the heat capacity as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief. 2 authors · Jun 25, 2010
- Probing Off-diagonal Eigenstate Thermalization with Tensor Networks Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases. 4 authors · Dec 1, 2023
- Stability of Superconducting Strings We investigate the stability of superconducting strings as bound states of strings and fermion zero modes at both the classical and quantum levels. The dynamics of these superconducting strings can result in a stable configuration, known as a vorton. We mainly focus on global strings, but the majority of the discussion can be applied to local strings. Using lattice simulations, we study the classical dynamics of superconducting strings and confirm that they relax to the vorton configuration through Nambu-Goldstone boson radiation, with no evidence of over-shooting that would destabilize the vorton. We explore the tunneling of fermion zero modes out of the strings. Both our classical analysis and quantum calculations yield consistent results: the maximum energy of the zero mode significantly exceeds the fermion mass, in contrast to previous literature. Additionally, we introduce a world-sheet formalism to evaluate the decay rate of zero modes into other particles, which constitute the dominant decay channel. We also identify additional processes that trigger zero-mode decay due to non-adiabatic changes of the string configuration. In these decay processes, the rates are suppressed by the curvature of string loops, with exponential suppression for large masses of the final states. We further study the scattering with light charged particles surrounding the string core produced by the zero-mode current and find that a wide zero-mode wavefunction can enhance vorton stability. 4 authors · Dec 16, 2024
- A Quantum Algorithm for Solving Linear Differential Equations: Theory and Experiment We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an Ntimes N matrix M, an N-dimensional vector emph{b}, and an initial vector emph{x}(0), obtain a target vector emph{x}(t) as a function of time t according to the constraint demph{x}(t)/dt=Memph{x}(t)+emph{b}. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances. In addition, we demonstrate our quantum algorithm for a 4times4 linear differential equation using a 4-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations. 10 authors · Jul 12, 2018
- From two dimensions to wire networks in a dice-lattice Josephson array We investigate Josephson arrays consisting of a dice-lattice network of superconducting weak links surrounding rhombic plaquettes of proximitized semiconductor. Josephson coupling of the weak links and electron density in the plaquettes are independently controlled by separate electrostatic gates. Applied magnetic flux results in an intricate pattern of switching currents associated with frustration, f. For depleted plaquettes, the switching current is nearly periodic in f, expected for a phase-only description, while occupied plaquettes yield a decreasing envelope of switching currents with increasing f. A model of flux dependence based on ballistic small-area junctions and diffusive large-area plaquettes yields excellent agreement with experiment. 8 authors · Oct 8, 2025
- Teleportation of entanglement over 143 km As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. 7 authors · Feb 28, 2014
- Symmetry-invariant quantum machine learning force fields Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools. 5 authors · Nov 19, 2023
- Deep learning probability flows and entropy production rates in active matter Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction. 2 authors · Sep 22, 2023
- Indirect measurement of atomic magneto-optical rotation via Hilbert transform The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime. 4 authors · Mar 1, 2024
- Nucleosynthesis in Outflows from Black Hole-Neutron Star Merger Disks With Full GRνRMHD Along with binary neutron star mergers, the in-spiral and merger of a black hole and a neutron star is a predicted site of r-process nucleosynthesis and associated kilonovae. For the right mass ratio, very large amounts of neutron rich material may become unbound from the post-merger accretion disk. We simulate a suite of four post-merger disks with full-transport general relativistic neutrino radiation magnetohydrodynamics. We find that the outflows from these disks are very close to the threshold conditions for robust r-process nucleosynthesis. For these conditions, the detailed properties of the outflow determine whether a full r-process can or cannot occur, implying that a wide range of observable phenomena are possible. We show that on average the disk outflow lanthanide fraction is suppressed relative to the solar isotopic pattern. In combination with the dynamical ejecta, these outflows imply a kilonova with both blue and red components. 6 authors · Dec 20, 2022
- Nonequilibrium Phenomena in Driven and Active Coulomb Field Theories The classical Coulomb gas model has served as one of the most versatile frameworks in statistical physics, connecting a vast range of phenomena across many different areas. Nonequilibrium generalisations of this model have so far been studied much more scarcely. With the abundance of contemporary research into active and driven systems, one would naturally expect that such generalisations of systems with long-ranged Coulomb-like interactions will form a fertile playground for interesting developments. Here, we present two examples of novel macroscopic behaviour that arise from nonequilibrium fluctuations in long-range interacting systems, namely (1) unscreened long-ranged correlations in strong electrolytes driven by an external electric field and the associated fluctuation-induced forces in the confined Casimir geometry, and (2) out-of-equilibrium critical behaviour in self-chemotactic models that incorporate the particle polarity in the chemotactic response of the cells. Both of these systems have nonlocal Coulomb-like interactions among their constituent particles, namely, the electrostatic interactions in the case of the driven electrolyte, and the chemotactic forces mediated by fast-diffusing signals in the case of self-chemotactic systems. The results presented here hint to the rich phenomenology of nonequilibrium effects that can arise from strong fluctuations in Coulomb interacting systems, and a rich variety of potential future directions, which are discussed. 2 authors · Jul 1, 2022
- AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis Large-scale datasets have enabled highly accurate machine learning interatomic potentials (MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some limitations in what can be treated with these potentials because of gaps in the underlying training data. To extend these capabilities, we introduce AQCat25, a complementary dataset of 13.5 million density functional theory (DFT) single point calculations designed to improve the treatment of systems where spin polarization and/or higher fidelity are critical. We also investigate methodologies for integrating new datasets, such as AQCat25, with the broader Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing generalizability. We find that directly tuning a general model on AQCat25 leads to catastrophic forgetting of the original dataset's knowledge. Conversely, joint training strategies prove effective for improving accuracy on the new data without sacrificing general performance. This joint approach introduces a challenge, as the model must learn from a dataset containing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We show that explicitly conditioning the model on this system-specific metadata, for example by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and further enhances model accuracy. Ultimately, our work establishes an effective protocol for bridging DFT fidelity domains to advance the predictive power of foundational models in catalysis. 3 authors · Oct 26, 2025
- LeapfrogLayers: A Trainable Framework for Effective Topological Sampling We introduce LeapfrogLayers, an invertible neural network architecture that can be trained to efficiently sample the topology of a 2D U(1) lattice gauge theory. We show an improvement in the integrated autocorrelation time of the topological charge when compared with traditional HMC, and look at how different quantities transform under our model. Our implementation is open source, and is publicly available on github at https://github.com/saforem2/l2hmc-qcd. 3 authors · Dec 2, 2021
- Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments We propose a machine learning method to model molecular tensorial quantities, namely the magnetic anisotropy tensor, based on the Gaussian-moment neural-network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3--0.4 cm^{-1} and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation. 5 authors · Dec 3, 2023
- Low-energy Injection and Nonthermal Particle Acceleration in Relativistic Magnetic Turbulence Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. Particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to magnetic field can play an important, if not dominant role. In this study, we carry out 2D fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameter sigma_0=20, we find that the injection energy {varepsilon}_{rm inj} converges with increasing domain size to {varepsilon}_{rm inj}simeq 10m_ec^2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W_parallel) and perpendicular (W_perp) electric fields during both the injection phase and the post-injection phase. We find that during the injection phase, the W_perp contribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, both components contribute equally during the post-injection phase, insensitive to the domain size. For high energy ({varepsilon}varepsilon_{rm inj}) particles, W_perp dominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas. 4 authors · Apr 29, 2024
- Strange Metallic Behavior in Anisotropic Background We continue our analysis on conductivity in the anisotropic background by employing the D-brane probe technique, where the D-branes play the role of charge carriers. The DC and AC conductivity for massless charge carriers are obtained analytically, while interesting curves for the AC conductivity are also plotted. For massive charge carriers, we calculate the DC and AC conductivities in the dilute limit and we fix the parameters in the Einstein-Maxwell-dilaton theory so that the background exhibits the same scaling behaviors as those for real-world strange metals. The DC conductivity at finite density is also computed. 3 authors · Jun 9, 2010
- Towards strange metallic holography We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity. 4 authors · Dec 5, 2009
- The information-theoretic foundation of thermodynamic work extraction In this paper I apply newly-proposed information-theoretic principles to thermodynamic work extraction. I show that if it is possible to extract work deterministically from a physical system prepared in any one of a set of states, then those states must be distinguishable from one another. This result is formulated independently of scale and of particular dynamical laws; it also provides a novel connection between thermodynamics and information theory, established via the law of conservation of energy (rather than the second law of thermodynamics). Albeit compatible with these conclusions, existing thermodynamics approaches cannot provide a result of such generality, because they are scale-dependent (relying on ensembles or coarse-graining) or tied to particular dynamical laws. This paper thus provides a broader foundation for thermodynamics, with implications for the theory of von Neumann's universal constructor 1 authors · Sep 9, 2020
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- A New Circle Theorem for Two Dimensional Ising Spin Glasses The Lee-Yang circle theorem revolutionized our understanding of phase transitions in ferromagnetic systems by showing that the complex zeros of partition functions lie on the unit circle, with criticality arising as these zeros approach the real axis in the thermodynamic limit. However, in frustrated systems such as antiferromagnets and spin glasses, the zeros deviate from this structure, making it challenging to extend the Lee-Yang theory to disordered systems. In this work, we establish a new circle theorem for two-dimensional Ising spin glasses, proving that the square of the partition function exhibits zeros densely packed along the unit circle. Numerical simulations on the square lattice confirm our theoretical predictions, demonstrating the validity of the circle law for quenched disorder. Furthermore, our results uncover a finite-temperature crossover in pm J spin glasses, characterized by the emergence of a spectral gap in the angular distribution of zeros. This result extends the Lee-Yang framework to disordered systems, offering new insights into spin-glass criticality. 1 authors · Mar 12, 2025
- Quantum limit for two-dimensional resolution of two incoherent optical point sources We obtain the multiple-parameter quantum Cram\'er-Rao bound for estimating the transverse Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method using fiber coupling can in principle attain the bound regardless of the distance between the two sources. 3 authors · Jun 2, 2016
- Magnetic Field Strength Effects on Nucleosynthesis from Neutron Star Merger Outflows Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust main r -process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of six with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal poor, r -process-enhanced stars. 4 authors · Nov 9, 2023
- Pseudo-magnetic fields in square lattices We have investigated the effects of strain on two-dimensional square lattices and examined the methods for inducing pseudo-magnetic fields. In both the columnar and staggered pi-flux square lattices, we have found that strain only modulates Fermi velocities rather than inducing pseudo-magnetic fields. However, spatially non-uniform on-site potentials (anisotropic hoppings) can create pseudo-magnetic fields in columnar (staggered) pi-flux square lattices. On the other hand, we demonstrate that strain does induce pseudo-magnetic fields in staggered zero-flux square lattices. By breaking a quarter of the bonds, we clarify that a staggered zero-flux square lattice is topologically equivalent to a honeycomb lattice and displays pseudo-vector potentials and pseudo-Landau levels at the Dirac points. 5 authors · Aug 31, 2023
- Quantum computing with Qiskit We describe Qiskit, a software development kit for quantum information science. We discuss the key design decisions that have shaped its development, and examine the software architecture and its core components. We demonstrate an end-to-end workflow for solving a problem in condensed matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for example the representation and optimization of circuits at various abstraction levels, its scalability and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits. Lastly, we discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks, and the future ahead. 12 authors · May 14, 2024
- Chemotactic motility-induced phase separation Collectives of actively-moving particles can spontaneously separate into dilute and dense phases -- a fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is well-studied for randomly-moving particles with no directional bias. However, many forms of active matter exhibit collective chemotaxis, directed motion along a chemical gradient that the constituent particles can generate themselves. Here, using theory and simulations, we demonstrate that collective chemotaxis strongly competes with MIPS -- in some cases, arresting or completely suppressing phase separation, or in other cases, generating fundamentally new dynamic instabilities. We establish quantitative principles describing this competition, thereby helping to reveal and clarify the rich physics underlying active matter systems that perform chemotaxis, ranging from cells to robots. 3 authors · Jan 28, 2023
- Are queries and keys always relevant? A case study on Transformer wave functions The dot product attention mechanism, originally designed for natural language processing tasks, is a cornerstone of modern Transformers. It adeptly captures semantic relationships between word pairs in sentences by computing a similarity overlap between queries and keys. In this work, we explore the suitability of Transformers, focusing on their attention mechanisms, in the specific domain of the parametrization of variational wave functions to approximate ground states of quantum many-body spin Hamiltonians. Specifically, we perform numerical simulations on the two-dimensional J_1-J_2 Heisenberg model, a common benchmark in the field of quantum many-body systems on lattice. By comparing the performance of standard attention mechanisms with a simplified version that excludes queries and keys, relying solely on positions, we achieve competitive results while reducing computational cost and parameter usage. Furthermore, through the analysis of the attention maps generated by standard attention mechanisms, we show that the attention weights become effectively input-independent at the end of the optimization. We support the numerical results with analytical calculations, providing physical insights of why queries and keys should be, in principle, omitted from the attention mechanism when studying large systems. 2 authors · May 29, 2024
- Minimal evolution times for fast, pulse-based state preparation in silicon spin qubits Standing as one of the most significant barriers to reaching quantum advantage, state-preparation fidelities on noisy intermediate-scale quantum processors suffer from quantum-gate errors, which accumulate over time. A potential remedy is pulse-based state preparation. We numerically investigate the minimal evolution times (METs) attainable by optimizing (microwave and exchange) pulses on silicon hardware. We investigate two state preparation tasks. First, we consider the preparation of molecular ground states and find the METs for H_2, HeH^+, and LiH to be 2.4 ns, 4.4 ns, and 27.2 ns, respectively. Second, we consider transitions between arbitrary states and find the METs for transitions between arbitrary four-qubit states to be below 50 ns. For comparison, connecting arbitrary two-qubit states via one- and two-qubit gates on the same silicon processor requires approximately 200 ns. This comparison indicates that pulse-based state preparation is likely to utilize the coherence times of silicon hardware more efficiently than gate-based state preparation. Finally, we quantify the effect of silicon device parameters on the MET. We show that increasing the maximal exchange amplitude from 10 MHz to 1 GHz accelerates the METs, e.g., for H_2 from 84.3 ns to 2.4 ns. This demonstrates the importance of fast exchange. We also show that increasing the maximal amplitude of the microwave drive from 884 kHz to 56.6 MHz shortens state transitions, e.g., for two-qubit states from 1000 ns to 25 ns. Our results bound both the state-preparation times for general quantum algorithms and the execution times of variational quantum algorithms with silicon spin qubits. 8 authors · Jun 16, 2024
- Exterior field of neutron stars: The singularity structure of vacuum and electrovac solutions In the present paper we study the singularity structure of the exterior field of neutron stars with the aid of the four-parameter exact solution of the Einstein-Maxwell equations. The complete analysis of this problem in the generic case becomes possible due to the implementation of the novel analytical approach to the resolution of the singularity condition, and it shows the absence of the ring singularities off the symmetry axis in the positive mass case, as well as the possibility of the removal of the ring singularity by a strong magnetic field in the negative mass case. The solution takes an extraordinarily simple form in the equatorial plane, very similar to that of the Kerr solution, which makes it most suitable for astrophysical applications as the simplest model of a rotating magnetized deformed mass. It also provides a nontrivial example confirming a recent claim that the varphi component of the electromagnetic four-potential has features inconsistent with the intrinsic properties of the electrovac metric, while the magnetic field is represented correctly by the t component of the dual electromagnetic four-potential. 4 authors · Mar 31, 2023
- Taming Landau level mixing in fractional quantum Hall states with deep learning Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both 1/3 and 2/5 filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect. 6 authors · Dec 19, 2024
- Neutron capture measurements for s-process nucleosynthesis; A review about CERN n_TOF developments and contributions This article presents a review about the main CERN n\_TOF contributions to the field of neutron-capture experiments of interest for s-process nucleosynthesis studies over the last 25 years, with special focus on the measurement of radioactive isotopes. A few recent capture experiments on stable isotopes of astrophysical interest are also discussed. Results on s-process branching nuclei are appropriate to illustrate how advances in detection systems and upgrades in the facility have enabled increasingly challenging experiments and, as a consequence, have led to a better understanding and modeling of the s-process mechanism of nucleosynthesis. New endeavors combining radioactive-ion beams from ISOLDE for the production of radioisotopically pure samples for activation experiments at the new NEAR facility at n\_TOF are briefly discussed. On the basis of these new exciting results, also current limitations of state-of-the-art TOF and activation techniques will be depicted, thereby showing the pressing need for further upgrades and enhancements on both facilities and detection systems. A brief account of the potential technique based on inverse kinematics for direct neutron-capture measurements is also presented. 146 authors · Feb 14, 2025
- Using angular momentum maps to detect kinematically distinct galactic components In this work we introduce a physically motivated method of performing disc/spheroid decomposition of simulated galaxies, which we apply to the Eagle sample. We make use of the HEALPix package to create Mollweide projections of the angular momentum map of each galaxy's stellar particles. A number of features arise on the angular momentum space which allows us to decompose galaxies and classify them into different morphological types. We assign stellar particles with angular separation of less/greater than 30 degrees from the densest grid cell on the angular momentum sphere to the disc/spheroid components, respectively. We analyse the spatial distribution for a subsample of galaxies and show that the surface density profiles of the disc and spheroid closely follow an exponential and a Sersic profile, respectively. In addition discs rotate faster, have smaller velocity dispersions, are younger and are more metal rich than spheroids. Thus our morphological classification reproduces the observed properties of such systems. Finally, we demonstrate that our method is able to identify a significant population of galaxies with counter-rotating discs and provide a more realistic classification of such systems compared to previous methods. 2 authors · Sep 17, 2020
1 The SWAP test and the Hong-Ou-Mandel effect are equivalent We show that the Hong-Ou-Mandel effect from quantum optics is equivalent to the SWAP test, a quantum information primitive which compares two arbitrary states. We first derive a destructive SWAP test that doesn't need the ancillary qubit that appears in the usual quantum circuit. Then, we study the Hong-Ou-Mandel effect for two photons meeting at a beam splitter and prove it is, in fact, an optical implementation of the destructive SWAP test. This result offers both an interesting simple realization of a powerful quantum information primitive and an alternative way to understand and analyse the Hong-Ou-Mandel effect. 2 authors · Mar 27, 2013
- Holographic Responses of Fermion Matter We consider the D4-D8-D8 brane system which serves as ultraviolet completion of the Nambu-Jona-Lasinio model, where the only degrees of freedom carrying baryon charge are fermions. By turning on chemical potential for this charge one may expect the formation of the Fermi liquid ground state. At strong coupling we use the dual holographic description to investigate the responses of the system to small perturbations. In the chirally symmetric phase we find that the density dependent part of the heat capacity vanishes linearly with temperature. We also observe a zero sound excitation in the collisionless regime, whose speed is equal to that of normal sound in the hydrodynamic regime. Both the linear dependence of the heat capacity and the existence of zero sound are properties of the Fermi liquid ground state. We also compute the two-point function of the currents at vanishing frequency but do not find any singularities at finite values of the momentum. 2 authors · Nov 13, 2008
- Bosonisation Cohomology: Spin Structure Summation in Every Dimension Gauging fermion parity and summing over spin structures are subtly distinct operations. We introduce 'bosonisation cohomology' groups H_B^{d+2}(X) to capture this difference, for theories in spacetime dimension d equipped with maps to some X. Non-trivial classes in H_B^{d+2}(X) contain theories for which (-1)^F is anomaly-free, but spin structure summation is anomalous. We formulate a sequence of cobordism groups whose failure to be exact is measured by H_B^{d+2}(X), and from here we compute it for X=pt. The result is non-trivial only in dimensions din 4Z+2, being due to the presence of gravitational anomalies. The first few are H_B^4=Z_2, probed by a theory of 8 Majorana-Weyl fermions in d=2, then H_B^8=Z_8, H_B^{12}=Z_{16}times Z_2. We rigorously derive a general formula extending this to every spacetime dimension. Along the way, we compile many general facts about (fermionic and bosonic) anomaly polynomials, and about spin and pin^- (co)bordism generators, that we hope might serve as a useful reference for physicists working with these objects. We briefly discuss some physics applications, including how the H_B^{12} class is trivialised in supergravity. Despite the name, and notation, we make no claim that H_B^bullet(X) actually defines a cohomology theory (in the Eilenberg-Steenrod sense). 2 authors · Nov 17, 2025
- Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium φ^3 QFT Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty . 2 authors · Dec 31, 2019
- An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon. 3 authors · Nov 20, 2024
- On Kinetic Optimal Probability Paths for Generative Models Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet. 5 authors · Jun 11, 2023
1 Elliptical orbits in the phase-space quantization The energy levels of hydrogen-like atoms are obtained from the phase-space quantization, one of the pillars of the old quantum theory, by three different methods - (i) direct integration, (ii) Sommerfeld's original method, and (iii) complex integration. The difficulties come from the imposition of elliptical orbits to the electron, resulting in a variable radial component of the linear momentum. Details of the calculation, which constitute a recurrent gap in textbooks that deal with phase-space quantization, are shown in depth in an accessible fashion for students of introductory quantum mechanics courses. 3 authors · May 25, 2016
- Electrical Tuning of Neutral and Charged Excitons with 1-nm Gate Electrical control of individual spins and photons in solids is key for quantum technologies, but scaling down to small, static systems remains challenging. Here, we demonstrate nanoscale electrical tuning of neutral and charged excitons in monolayer WSe2 using 1-nm carbon nanotube gates. Electrostatic simulations reveal a confinement radius below 15 nm, reaching the exciton Bohr radius limit for few-layer dielectric spacing. In situ photoluminescence spectroscopy shows gate-controlled conversion between neutral excitons, negatively charged trions, and biexcitons at 4 K. Important for quantum information processing applications, our measurements indicate gating of a local 2D electron gas in the WSe2 layer, coupled to photons via trion transitions with binding energies exceeding 20 meV. The ability to deterministically tune and address quantum emitters using nanoscale gates provides a pathway towards large-scale quantum optoelectronic circuits and spin-photon interfaces for quantum networking. 8 authors · Oct 30, 2023
- A Compact Dual-Beam Zeeman Slower for High-Flux Cold Atoms We present a compact design of dual-beam Zeeman slower optimized for efficient production of cold atom applications. Traditional single-beam configurations face challenges from substantial residual atomic flux impacting downstream optical windows, resulting in increased system size, atomic deposition contamination, and a reduced operational lifetime. Our approach employs two oblique laser beams and a capillary-array collimation system to address these challenges while maintaining efficient deceleration. For rubidium (^{87}Rb), simulations demonstrate a significant increase in the fraction of atoms captured by a two-dimensional magneto-optical trap (2D-MOT) and nearly eliminate atom-induced contamination probability at optical windows, all within a compact Zeeman slower length of 44 cm. Experimental validation with Rb and Yb demonstrates highly efficient atomic loading within the same compact design. This advancement represents a substantial improvement for high-flux cold atom applications, providing reliable performance for high-precision metrology, quantum computation and simulation. 9 authors · Nov 11, 2025
- Dynamical Model of J/Ψ photo-production on the nucleon A dynamical model based on a phenomenological charm quark-nucleon(c-N) potential v_{cN} and the Pomeron-exchange mechanism is constructed to investigate the J/Psi photo-production on the nucleon from threshold to invariant mass W=300 GeV. The J/Psi-N potential,V_{J/Psi N}(r),is constructed by folding v_{cN} into the wavefunction Phi_{J/Psi}(cc) of J/Psi within a Constituent Quark Model(CQM) of Ref.[43]. A photo-production amplitude is also generated by v_{cN} by a cc-loop integration over the gammarightarrow cc vertex function and Phi_{J/Psi}(cc). No commonly used Vector Meson Dominance assumption is used to define this photo-production amplitude which is needed to describe the data near the threshold. The potential v_{cN}(r) is parameterized in a form such that the predicted V_{J/Psi N}(r) at large distances has the same Yukawa potential form extracted from a Lattice QCD(LQCD) calculation of Ref.[18]. The parameters of v_{cN} are determined by fitting the total cross section data of JLab by performing calculations that include J/Psi-N final state interactions(FSI). The resulting differential cross sections are found in good agreements with the data. It is shown that the FSI effects dominate the cross section in the very near threshold region, allowing for sensitive testing of the predicted J/Psi-N scattering amplitudes. By imposing the constraints of J/Psi-N potential extracted from the LQCD calculation, we have obtained three J/Psi-N potentials which fit the JLab data equally well. The resulting J/Psi-N scattering lengths are in the range of a=(-0.05 fm sim -0.25 fm). With the determined v_{cN}(r) and the wavefunctions generated from the same CQM, the constructed model is used to predict the cross sections of photo-production of eta_c(1S) and Psi(2S) mesons for future experimental tests. 3 authors · Mar 4, 2024
- Generalized chiral instabilities, linking numbers, and non-invertible symmetries We demonstrate a universal mechanism of a class of instabilities in infrared regions for massless Abelian p-form gauge theories with topological interactions, which we call generalized chiral instabilities. Such instabilities occur in the presence of initial electric fields for the p-form gauge fields. We show that the dynamically generated magnetic fields tend to decrease the initial electric fields and result in configurations with linking numbers, which can be characterized by non-invertible global symmetries. The so-called chiral plasma instability and instabilities of the axion electrodynamics and (4+1)-dimensional Maxwell-Chern-Simons theory in electric fields can be described by the generalized chiral instabilities in a unified manner. We also illustrate this mechanism in the (2+1)-dimensional Goldstone-Maxwell model in electric field. 2 authors · May 2, 2023
- Building an AdS/CFT superconductor We show that a simple gravitational theory can provide a holographically dual description of a superconductor. There is a critical temperature, below which a charged condensate forms via a second order phase transition and the (DC) conductivity becomes infinite. The frequency dependent conductivity develops a gap determined by the condensate. We find evidence that the condensate consists of pairs of quasiparticles. 3 authors · Mar 22, 2008
- Enhanced Spectral Density of a Single Germanium Vacancy Center in a Nanodiamond by Cavity-Integration Color centers in diamond, among them the negatively-charged germanium vacancy (GeV^-), are promising candidates for many applications of quantum optics such as a quantum network. For efficient implementation, the optical transitions need to be coupled to a single optical mode. Here, we demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P\'erot microcavity by nanomanipulation utilizing an atomic force microscope. Coupling of the GeV- defect to the cavity mode is achieved, while the optical resonator maintains a high finesse of F = 7,700 and a 48-fold spectral density enhancement is observed. This article demonstrates the integration of a GeV- defect with a Fabry-P\'erot microcavity under ambient conditions with the potential to extend the experiments to cryogenic temperatures towards an efficient spin-photon platform. 9 authors · Jul 3, 2023
- Unconventional Electromechanical Response in Ferrocene Assisted Gold Atomic Chain Atomically thin metallic chains serve as pivotal systems for studying quantum transport, with their conductance strongly linked to the orbital picture. Here, we report a non-monotonic electro-mechanical response in a gold-ferrocene junction, characterized by an unexpected conductance increase over a factor of ten upon stretching. This response is detected in the formation of ferrocene-assisted atomic gold chain in a mechanically controllable break junction at a cryogenic temperature. DFT based calculations show that tilting of molecules inside the chain modifies the orbital overlap and the transmission spectra, leading to such non-monotonic conductance evolution with stretching. This behavior, unlike typical flat conductance plateaus observed in metal atomic chains, pinpoints the unique role of conformational rearrangements during chain elongation. Our findings provide a deeper understanding of the role of orbital hybridization in transport properties and offer new opportunities for designing nanoscale devices with tailored electro-mechanical characteristics. 6 authors · Sep 2, 2025
- Supervised learning with quantum enhanced feature spaces Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning. 7 authors · Apr 30, 2018
- Reflection Removal Using Recurrent Polarization-to-Polarization Network This paper addresses reflection removal, which is the task of separating reflection components from a captured image and deriving the image with only transmission components. Considering that the existence of the reflection changes the polarization state of a scene, some existing methods have exploited polarized images for reflection removal. While these methods apply polarized images as the inputs, they predict the reflection and the transmission directly as non-polarized intensity images. In contrast, we propose a polarization-to-polarization approach that applies polarized images as the inputs and predicts "polarized" reflection and transmission images using two sequential networks to facilitate the separation task by utilizing the interrelated polarization information between the reflection and the transmission. We further adopt a recurrent framework, where the predicted reflection and transmission images are used to iteratively refine each other. Experimental results on a public dataset demonstrate that our method outperforms other state-of-the-art methods. 3 authors · Feb 28, 2024