File size: 7,184 Bytes
6595fed
28e7eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6595fed
 
 
8442e3d
6595fed
 
 
8884cad
6595fed
 
 
 
 
 
 
44a4fd0
6595fed
f793746
 
 
 
 
6595fed
 
714fcf8
 
 
6595fed
 
 
f793746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6595fed
9865598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6595fed
 
a5d0aa7
f793746
6595fed
 
 
 
 
 
 
 
 
 
 
 
 
 
f793746
 
6595fed
 
 
 
 
f793746
 
 
 
6595fed
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- multilingual
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- it
- ja
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license: mit
tags:
- generated_from_trainer
datasets: papluca/language-identification
metrics:
- accuracy
- f1
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-language-detection
  results: []
---

# xlm-roberta-base-language-detection

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset.

## Model description

This model is an XLM-RoBERTa transformer model with a classification head on top (i.e. a linear layer on top of the pooled output). 
For additional information please refer to the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) model card or to the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al.

## Intended uses & limitations

You can directly use this model as a language detector, i.e. for sequence classification tasks. Currently, it supports the following 20 languages: 

`arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)`

## Training and evaluation data

The model was fine-tuned on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset, which consists of text sequences in 20 languages. The training set contains 70k samples, while the validation and test sets 10k each. The average accuracy on the test set is **99.6%** (this matches the average macro/weighted F1-score being the test set perfectly balanced). A more detailed evaluation is provided by the following table.

| Language | Precision | Recall | F1-score | support |
|:--------:|:---------:|:------:|:--------:|:-------:|
|ar        |0.998      |0.996   |0.997     |500      |
|bg        |0.998      |0.964   |0.981     |500      |
|de        |0.998      |0.996   |0.997     |500      |
|el        |0.996      |1.000   |0.998     |500      |
|en        |1.000      |1.000   |1.000     |500      |
|es        |0.967      |1.000   |0.983     |500      |
|fr        |1.000      |1.000   |1.000     |500      |
|hi        |0.994      |0.992   |0.993     |500      |
|it        |1.000      |0.992   |0.996     |500      |
|ja        |0.996      |0.996   |0.996     |500      |
|nl        |1.000      |1.000   |1.000     |500      |
|pl        |1.000      |1.000   |1.000     |500      |
|pt        |0.988      |1.000   |0.994     |500      |
|ru        |1.000      |0.994   |0.997     |500      |
|sw        |1.000      |1.000   |1.000     |500      |
|th        |1.000      |0.998   |0.999     |500      |
|tr        |0.994      |0.992   |0.993     |500      |
|ur        |1.000      |1.000   |1.000     |500      |
|vi        |0.992      |1.000   |0.996     |500      |
|zh        |1.000      |1.000   |1.000     |500      |

### Benchmarks

As a baseline to compare `xlm-roberta-base-language-detection` against, we have used the Python [langid](https://github.com/saffsd/langid.py) library. Since it comes pre-trained on 97 languages, we have used its `.set_languages()` method to constrain the language set to our 20 languages. The average accuracy of langid on the test set is **98.5%**. More details are provided by the table below.

| Language | Precision | Recall | F1-score | support |
|:--------:|:---------:|:------:|:--------:|:-------:|
|ar        |0.990      |0.970   |0.980     |500      |
|bg        |0.998      |0.964   |0.981     |500      |
|de        |0.992      |0.944   |0.967     |500      |
|el        |1.000      |0.998   |0.999     |500      |
|en        |1.000      |1.000   |1.000     |500      |
|es        |1.000      |0.968   |0.984     |500      |
|fr        |0.996      |1.000   |0.998     |500      |
|hi        |0.949      |0.976   |0.963     |500      |
|it        |0.990      |0.980   |0.985     |500      |
|ja        |0.927      |0.988   |0.956     |500      |
|nl        |0.980      |1.000   |0.990     |500      |
|pl        |0.986      |0.996   |0.991     |500      |
|pt        |0.950      |0.996   |0.973     |500      |
|ru        |0.996      |0.974   |0.985     |500      |
|sw        |1.000      |1.000   |1.000     |500      |
|th        |1.000      |0.996   |0.998     |500      |
|tr        |0.990      |0.968   |0.979     |500      |
|ur        |0.998      |0.996   |0.997     |500      |
|vi        |0.971      |0.990   |0.980     |500      |
|zh        |1.000      |1.000   |1.000     |500      |

## How to get started with the model

The easiest way to use the model is via the high-level `pipeline` API:

```python
from transformers import pipeline

text = [
    "Brevity is the soul of wit.",
    "Amor, ch'a nullo amato amar perdona."
]

model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
pipe(text, top_k=1, truncation=True)
```

Or one can proceed with the tokenizer and model separately:

```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

text = [
    "Brevity is the soul of wit.",
    "Amor, ch'a nullo amato amar perdona."
]

model_ckpt = "papluca/xlm-roberta-base-language-detection"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)

inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

preds = torch.softmax(logits, dim=-1)

# Map raw predictions to languages
id2lang = model.config.id2label
vals, idxs = torch.max(preds, dim=1)
{id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}
```

## Training procedure

Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

The validation results on the `valid` split of the Language Identification dataset are summarised here below.

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2492        | 1.0   | 1094 | 0.0149          | 0.9969   | 0.9969 |
| 0.0101        | 2.0   | 2188 | 0.0103          | 0.9977   | 0.9977 |

In short, it achieves the following results on the validation set:
- Loss: 0.0101
- Accuracy: 0.9977
- F1: 0.9977

### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3