--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Base Ta - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ta split: test metrics: - type: wer value: 15.78 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ta_in split: test metrics: - type: wer value: 20.41 name: WER --- # Whisper Base Ta - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2269 - Wer: 21.7243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.5559 | 0.1 | 1000 | 0.3963 | 35.3308 | | 0.3891 | 0.2 | 2000 | 0.3146 | 29.1511 | | 0.3425 | 0.3 | 3000 | 0.2834 | 25.5930 | | 0.3108 | 0.1 | 4000 | 0.2669 | 24.7191 | | 0.2866 | 0.1 | 5000 | 0.2596 | 25.0936 | | 0.2697 | 0.2 | 6000 | 0.2507 | 24.5943 | | 0.2421 | 0.05 | 6500 | 0.2411 | 23.0395 | | 0.2425 | 0.1 | 7000 | 0.2370 | 23.3804 | | 0.2404 | 0.15 | 7500 | 0.2333 | 22.7959 | | 0.2381 | 0.2 | 8000 | 0.2311 | 22.9420 | | 0.2429 | 0.25 | 8500 | 0.2305 | 22.0166 | | 0.2402 | 0.3 | 9000 | 0.2284 | 22.1140 | | 0.2377 | 0.35 | 9500 | 0.2271 | 22.0653 | | 0.2389 | 0.4 | 10000 | 0.2269 | 21.7243 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2