File size: 2,039 Bytes
ff3d0f5
35c256d
 
ff3d0f5
 
35c256d
ff3d0f5
35c256d
 
ff3d0f5
35c256d
ff3d0f5
 
 
 
 
 
35c256d
ff3d0f5
35c256d
 
 
 
ff3d0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3d0f5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- kn
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small Kn - Bharat Ramanathan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Kn - Bharat Ramanathan

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1398
- Wer: 23.8167

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4126        | 0.1   | 500  | 2.2797          | 127.2639 |
| 0.2099        | 0.1   | 1000 | 0.1774          | 28.2494  |
| 0.1736        | 0.2   | 1500 | 0.1565          | 27.5733  |
| 0.1506        | 0.3   | 2000 | 0.1514          | 26.0331  |
| 0.1373        | 0.4   | 2500 | 0.1494          | 24.4177  |
| 0.1298        | 0.5   | 3000 | 0.1456          | 25.0563  |
| 0.1198        | 1.06  | 3500 | 0.1436          | 24.4177  |
| 0.1102        | 0.1   | 4000 | 0.1452          | 24.2675  |
| 0.1097        | 0.2   | 4500 | 0.1402          | 24.3050  |
| 0.105         | 0.3   | 5000 | 0.1398          | 23.8167  |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2