File size: 2,340 Bytes
7de8550
973cfdb
 
 
7de8550
973cfdb
7de8550
973cfdb
 
7de8550
973cfdb
02434dc
 
 
 
 
 
 
 
 
 
 
 
 
2a27c2e
 
 
 
 
 
 
 
 
 
 
 
7de8550
 
 
 
 
973cfdb
7de8550
973cfdb
 
 
 
7de8550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e9491
 
7de8550
 
 
 
40e9491
7de8550
 
973cfdb
 
 
 
 
 
 
 
 
 
 
 
7de8550
 
 
40e9491
7de8550
40e9491
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small ML - Bharat Ramanathan
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0
      type: mozilla-foundation/common_voice_11_0
      config: ml
      split: test
    metrics:
    - type: wer
      value: 25.8
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: ml_in
      split: test
    metrics:
    - type: wer
      value: 48.16
      name: WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ML - Bharat Ramanathan

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2308
- Wer: 36.7397

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1275        | 4.03  | 500  | 0.1630          | 35.4015 |
| 0.09          | 9.02  | 1000 | 0.1821          | 40.0243 |
| 0.062         | 14.01 | 1500 | 0.2004          | 37.7129 |
| 0.0441        | 19.0  | 2000 | 0.2105          | 36.2530 |
| 0.0335        | 23.03 | 2500 | 0.2250          | 37.7129 |
| 0.0276        | 28.02 | 3000 | 0.2308          | 36.7397 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2