--- language: - ml license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Small ML - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ml split: test metrics: - type: wer value: 25.8 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ml_in split: test metrics: - type: wer value: 48.16 name: WER --- # Whisper Small ML - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2308 - Wer: 36.7397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1275 | 4.03 | 500 | 0.1630 | 35.4015 | | 0.09 | 9.02 | 1000 | 0.1821 | 40.0243 | | 0.062 | 14.01 | 1500 | 0.2004 | 37.7129 | | 0.0441 | 19.0 | 2000 | 0.2105 | 36.2530 | | 0.0335 | 23.03 | 2500 | 0.2250 | 37.7129 | | 0.0276 | 28.02 | 3000 | 0.2308 | 36.7397 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2