--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Ta - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ta_in split: test metrics: - type: wer value: 15.8 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ta split: test metrics: - type: wer value: 11.15 name: WER --- # Whisper Small Ta - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1803 - Wer: 17.1456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3374 | 0.1 | 500 | 0.2579 | 23.3804 | | 0.29 | 0.2 | 1000 | 0.2260 | 20.9937 | | 0.2522 | 0.3 | 1500 | 0.2139 | 20.0682 | | 0.2338 | 0.4 | 2000 | 0.2025 | 19.6785 | | 0.223 | 0.5 | 2500 | 0.1979 | 18.3147 | | 0.211 | 0.6 | 3000 | 0.1927 | 17.8276 | | 0.2032 | 0.7 | 3500 | 0.1865 | 17.3892 | | 0.1978 | 0.8 | 4000 | 0.1839 | 17.5353 | | 0.1972 | 0.9 | 4500 | 0.1812 | 17.0969 | | 0.1894 | 1.0 | 5000 | 0.1803 | 17.1456 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2