parinzee commited on
Commit
ae03e67
·
1 Parent(s): 6cf797c

Initial Training

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.82 +/- 12.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31422373a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3142237430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31422374c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3142237550>", "_build": "<function ActorCriticPolicy._build at 0x7f31422375e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3142237670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3142237700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3142237790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3142237820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31422378b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3142237940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3142234570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673239497690017512, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPvbz4CeDk/UikIvicfF7+G1WA+sK9NvgAAAAAAAAAAZhrBuwOuLLzIBbY9fpbSO1Ejnb2ml7s8AACAPwAAgD9gJBY+nFzAP2FNGj/uj8W9fx1qPvrM1j4AAAAAAAAAAGaDhzzDlE+8+uGZOxQykDwMeb29fi9rPQAAgD8AAIA/ABcRPgK/YT6Wu7O+/G3IvonJer3AYxW+AAAAAAAAAAAApcc8wxUsumKVNbwBYpg8vQW+OxpJhL0AAIA/AACAP2b6RTyFQOm7vSZRPKXpbTz8dU69FvJIPQAAgD8AAIA/Zn0ZPY7edj87G4c9K0InvwYLaD17I1c8AAAAAAAAAABmCfw8IdqtPYBPGD2urLW+Q5KFPZoDTD0AAAAAAAAAAACYiTzpFxK8PQMYvHAAejz8o3U9+MJRvQAAgD8AAIA/gFm3vXXHAj6inZc+0lPcvmlyXD6QfPo9AAAAAAAAAADzMa695uAAP4YAJT75/gq/B4rEvTdLJD4AAAAAAAAAAPqSML7H1rE/AnP4vpNq8L44AYC++wFSvgAAAAAAAAAA4AAdvqsccj/DyCG+w88Nv623xr42K+O8AAAAAAAAAADgM4w+6uSBP0OasT51/yq/68nvPhKUvzwAAAAAAAAAAABdkryp+Ge8UvDSPA0ShzwGgNG9i11gPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcLIN3MG4cUCUhpRSlIwBbJRLxYwBdJRHQK3yHgjQiRp1fZQoaAZoCWgPQwh/9iNFpKJxQJSGlFKUaBVLvWgWR0Ct8jlyBCladX2UKGgGaAloD0MIigRTzWxLcUCUhpRSlGgVS8poFkdArfJZcNYr8XV9lChoBmgJaA9DCHbEIRtIunNAlIaUUpRoFUu3aBZHQK3yhcyFfzB1fZQoaAZoCWgPQwju0LAYtQ5zQJSGlFKUaBVLvGgWR0Ct8pXhwVCYdX2UKGgGaAloD0MIZ2DkZU3ScUCUhpRSlGgVS9NoFkdArfKXI2fkFXV9lChoBmgJaA9DCNhl+E93qnBAlIaUUpRoFUu4aBZHQK3yoSA6Mit1fZQoaAZoCWgPQwhSKuEJPXtxQJSGlFKUaBVLxmgWR0Ct8tDNQj2SdX2UKGgGaAloD0MIG0tYG2Mdb0CUhpRSlGgVS8toFkdArfLXMY/FBXV9lChoBmgJaA9DCI1jJHvEd3JAlIaUUpRoFUvSaBZHQK3y11L8Jld1fZQoaAZoCWgPQwh8nGnCNhhwQJSGlFKUaBVLw2gWR0Ct8vXAmAskdX2UKGgGaAloD0MIYCLeOn9pcECUhpRSlGgVS8JoFkdArfMA66reZXV9lChoBmgJaA9DCHFa8KLvq3FAlIaUUpRoFUu6aBZHQK3zWwEhaDB1fZQoaAZoCWgPQwjEew4sh+xzQJSGlFKUaBVLvGgWR0Ct82HcL0BfdX2UKGgGaAloD0MIWwhyUIKdcUCUhpRSlGgVS9ZoFkdArfNtHe7+UHV9lChoBmgJaA9DCG/XS1PEbXFAlIaUUpRoFUvLaBZHQK3zg0F8ohJ1fZQoaAZoCWgPQwijeJW1TQtxQJSGlFKUaBVLu2gWR0Ct8+R8D0UXdX2UKGgGaAloD0MIDmjpCnaEcECUhpRSlGgVS79oFkdArfQJnezlcXV9lChoBmgJaA9DCA5nfjVHqHFAlIaUUpRoFUu4aBZHQK30GQg9vCN1fZQoaAZoCWgPQwiGdHgIYxByQJSGlFKUaBVLwWgWR0Ct9F2aMJhOdX2UKGgGaAloD0MIySHi5hTBdECUhpRSlGgVS75oFkdArfRyKYRdyHV9lChoBmgJaA9DCErs2t6uwXBAlIaUUpRoFUvGaBZHQK30fkI5YHR1fZQoaAZoCWgPQwjjUwCM53BxQJSGlFKUaBVL1GgWR0Ct/rTSThYOdX2UKGgGaAloD0MINXwL6wa3cUCUhpRSlGgVS7toFkdArf62/vfCRHV9lChoBmgJaA9DCM5UiEfiDnNAlIaUUpRoFUvJaBZHQK3+2G7jDKp1fZQoaAZoCWgPQwgZ529CIZ1zQJSGlFKUaBVLzGgWR0Ct/toaUA1fdX2UKGgGaAloD0MInWUWoZjwcUCUhpRSlGgVS+BoFkdArf8vUONHY3V9lChoBmgJaA9DCLX7VYCv0nJAlIaUUpRoFUvdaBZHQK3/NYvnKW91fZQoaAZoCWgPQwh+xRou8kxxQJSGlFKUaBVLwWgWR0Ct/1Xo1UEQdX2UKGgGaAloD0MIVix+U9iucECUhpRSlGgVS75oFkdArf9akXUH6nV9lChoBmgJaA9DCGdF1ETfWHBAlIaUUpRoFUvHaBZHQK3/XqrzXjF1fZQoaAZoCWgPQwgtmPijqG9wQJSGlFKUaBVLt2gWR0Ct/2EEs8PndX2UKGgGaAloD0MIQs77/7i7cUCUhpRSlGgVS8BoFkdArf/V/hESd3V9lChoBmgJaA9DCFlRg2nYWXFAlIaUUpRoFUuzaBZHQK3/2Vvddmh1fZQoaAZoCWgPQwhXlX1XxOtxQJSGlFKUaBVLumgWR0Ct//vKuB+XdX2UKGgGaAloD0MIEmxc/260ckCUhpRSlGgVS7poFkdArgHtPnB+F3V9lChoBmgJaA9DCKLxRBBn43FAlIaUUpRoFUu0aBZHQK4CAn3L3bp1fZQoaAZoCWgPQwg9DK1ODjZxQJSGlFKUaBVL1WgWR0CuAi7hegL7dX2UKGgGaAloD0MIVWthFtoMcUCUhpRSlGgVS+ZoFkdArgKWgOBlMHV9lChoBmgJaA9DCFH0wMegMXNAlIaUUpRoFUvhaBZHQK4CsTNdJJ51fZQoaAZoCWgPQwgE5EuooDJ0QJSGlFKUaBVL5GgWR0CuArySeRPodX2UKGgGaAloD0MITBx5IPLVc0CUhpRSlGgVS8ZoFkdArgLJpvgm7nV9lChoBmgJaA9DCJXurrMh23BAlIaUUpRoFUu/aBZHQK4C5E3sHB11fZQoaAZoCWgPQwgiT5KuGZduQJSGlFKUaBVLwWgWR0CuAvHIyTIOdX2UKGgGaAloD0MI41XWNgVnc0CUhpRSlGgVS8VoFkdArgLx0Qsf73V9lChoBmgJaA9DCJW7z/HRXHJAlIaUUpRoFUvHaBZHQK4C/xMFlkJ1fZQoaAZoCWgPQwiyaDo72VlwQJSGlFKUaBVL4GgWR0CuAxgeii7DdX2UKGgGaAloD0MIPSe9b/y3cECUhpRSlGgVS7hoFkdArgNblkpZwHV9lChoBmgJaA9DCFDDt7DuS3NAlIaUUpRoFUu5aBZHQK4DYYXwb2l1fZQoaAZoCWgPQwjWHYttUo5xQJSGlFKUaBVLrmgWR0CuA2dkJ8fFdX2UKGgGaAloD0MIPBHEeXiKckCUhpRSlGgVS8poFkdArgR02BJ7LXV9lChoBmgJaA9DCLqFrkTgVnNAlIaUUpRoFUvnaBZHQK4EiJswco91fZQoaAZoCWgPQwj6er5meeNxQJSGlFKUaBVL4WgWR0CuBI1P3ztkdX2UKGgGaAloD0MIn3HhQAhLckCUhpRSlGgVS7doFkdArgTLSXt0FXV9lChoBmgJaA9DCMB4Bg09SHJAlIaUUpRoFUvOaBZHQK4E6PI4lyB1fZQoaAZoCWgPQwgcJa/OMWdyQJSGlFKUaBVLsWgWR0CuBPAhr30xdX2UKGgGaAloD0MIZrtCH+yNc0CUhpRSlGgVS8doFkdArgUH0kGA1HV9lChoBmgJaA9DCCMRGsGG4HFAlIaUUpRoFUu7aBZHQK4FDSpiqhl1fZQoaAZoCWgPQwhlwi/1s2tyQJSGlFKUaBVLumgWR0CuBTEGiYb9dX2UKGgGaAloD0MILJyk+WPbcUCUhpRSlGgVS8xoFkdArgUvMW43FXV9lChoBmgJaA9DCP/NixPf+G5AlIaUUpRoFUvlaBZHQK4FQbONYKZ1fZQoaAZoCWgPQwjkLOxpBzBxQJSGlFKUaBVL1WgWR0CuBV0fozN2dX2UKGgGaAloD0MIfSJPki76b0CUhpRSlGgVS8JoFkdArgWP8fmtAHV9lChoBmgJaA9DCKIMVTFVvHJAlIaUUpRoFUvgaBZHQK4F08nuy/t1fZQoaAZoCWgPQwhjCWtjrM9zQJSGlFKUaBVL+mgWR0CuBiDkdV/+dX2UKGgGaAloD0MIzNJOzaWYcECUhpRSlGgVS71oFkdArgZ3Q0GeMHV9lChoBmgJaA9DCMed0sG61HBAlIaUUpRoFUvEaBZHQK4GnQFcIJJ1fZQoaAZoCWgPQwgZqmIqvT9zQJSGlFKUaBVLyWgWR0CuBq9hJAdGdX2UKGgGaAloD0MIUMO3sG4WcECUhpRSlGgVS7xoFkdArgbIQg9vCXV9lChoBmgJaA9DCEeNCTGX63BAlIaUUpRoFUu+aBZHQK4HCS7oSth1fZQoaAZoCWgPQwh4QURqGmhxQJSGlFKUaBVL0GgWR0CuBx55AyEddX2UKGgGaAloD0MIObUzTC1wckCUhpRSlGgVS9FoFkdArgcoMa0hNnV9lChoBmgJaA9DCAvPS8XGq3FAlIaUUpRoFUu9aBZHQK4HMiliz9l1fZQoaAZoCWgPQwjjiSDOA+FxQJSGlFKUaBVLz2gWR0CuBz3vH93sdX2UKGgGaAloD0MIV+2akBbBc0CUhpRSlGgVS9VoFkdArgdrUZvUBnV9lChoBmgJaA9DCFX3yOYqQ3JAlIaUUpRoFUu6aBZHQK4HjqGDcud1fZQoaAZoCWgPQwjieD4DKkJwQJSGlFKUaBVL1mgWR0CuB58gQpWndX2UKGgGaAloD0MIdVYL7LGIdECUhpRSlGgVS+NoFkdArgej7l7tzHV9lChoBmgJaA9DCLn6sUl+MG9AlIaUUpRoFUvPaBZHQK4IB9gnc+J1fZQoaAZoCWgPQwg6lQwA1SNuQJSGlFKUaBVLyWgWR0CuCEBltj0+dX2UKGgGaAloD0MIks7AyMvJckCUhpRSlGgVS89oFkdArgiyqbSZ0HV9lChoBmgJaA9DCGQipdn8sXBAlIaUUpRoFUvFaBZHQK4IvHFPznR1fZQoaAZoCWgPQwhB740hABJ0QJSGlFKUaBVLw2gWR0CuCMlaSs8xdX2UKGgGaAloD0MITOFBsytMcUCUhpRSlGgVS8toFkdArgj35k9U0nV9lChoBmgJaA9DCFYqqKh6uHFAlIaUUpRoFUvAaBZHQK4JTNVR1ox1fZQoaAZoCWgPQwjA6V2838RwQJSGlFKUaBVLymgWR0CuCVLP2PDHdX2UKGgGaAloD0MIGmt/Zzusc0CUhpRSlGgVS85oFkdArglWHLzPKXV9lChoBmgJaA9DCD9XW7H/ynFAlIaUUpRoFUvZaBZHQK4JX3TNMXd1fZQoaAZoCWgPQwjzy2CMyEdyQJSGlFKUaBVLt2gWR0CuCWhQemvXdX2UKGgGaAloD0MIYHZPHhbqb0CUhpRSlGgVS9ZoFkdArgl7mfXf7HV9lChoBmgJaA9DCC0nofQFXnNAlIaUUpRoFUvGaBZHQK4JrlYlpoN1fZQoaAZoCWgPQwji578Hb6xwQJSGlFKUaBVLyWgWR0CuCcsVUModdX2UKGgGaAloD0MIfJqTF9lgckCUhpRSlGgVS9FoFkdArgnk34sVcnV9lChoBmgJaA9DCBHhXwQNmW5AlIaUUpRoFUvEaBZHQK4KKBvJiiJ1fZQoaAZoCWgPQwiCH9Ww349LQJSGlFKUaBVLj2gWR0CuCjsVUModdX2UKGgGaAloD0MIXBsqxvllRkCUhpRSlGgVS5JoFkdArgqFEkSmInV9lChoBmgJaA9DCAmH3uIhPXFAlIaUUpRoFUvTaBZHQK4KkJBw++x1fZQoaAZoCWgPQwiTx9PyA2JmQJSGlFKUaBVN6ANoFkdArgqkguAZsXV9lChoBmgJaA9DCJ2dDI5STHFAlIaUUpRoFUu4aBZHQK4KshY/3WZ1fZQoaAZoCWgPQwjgDtQpD5FxQJSGlFKUaBVLwGgWR0CuCs/T1CgLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-tuned.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9120cf622bf32398c220810cf29e25c6706994d3b784271b5450a9b647b25a74
3
+ size 147088
ppo-LunarLander-v2-tuned/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-tuned/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31422373a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3142237430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31422374c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3142237550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f31422375e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3142237670>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3142237700>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3142237790>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3142237820>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31422378b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3142237940>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3142234570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673239497690017512,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPvbz4CeDk/UikIvicfF7+G1WA+sK9NvgAAAAAAAAAAZhrBuwOuLLzIBbY9fpbSO1Ejnb2ml7s8AACAPwAAgD9gJBY+nFzAP2FNGj/uj8W9fx1qPvrM1j4AAAAAAAAAAGaDhzzDlE+8+uGZOxQykDwMeb29fi9rPQAAgD8AAIA/ABcRPgK/YT6Wu7O+/G3IvonJer3AYxW+AAAAAAAAAAAApcc8wxUsumKVNbwBYpg8vQW+OxpJhL0AAIA/AACAP2b6RTyFQOm7vSZRPKXpbTz8dU69FvJIPQAAgD8AAIA/Zn0ZPY7edj87G4c9K0InvwYLaD17I1c8AAAAAAAAAABmCfw8IdqtPYBPGD2urLW+Q5KFPZoDTD0AAAAAAAAAAACYiTzpFxK8PQMYvHAAejz8o3U9+MJRvQAAgD8AAIA/gFm3vXXHAj6inZc+0lPcvmlyXD6QfPo9AAAAAAAAAADzMa695uAAP4YAJT75/gq/B4rEvTdLJD4AAAAAAAAAAPqSML7H1rE/AnP4vpNq8L44AYC++wFSvgAAAAAAAAAA4AAdvqsccj/DyCG+w88Nv623xr42K+O8AAAAAAAAAADgM4w+6uSBP0OasT51/yq/68nvPhKUvzwAAAAAAAAAAABdkryp+Ge8UvDSPA0ShzwGgNG9i11gPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcLIN3MG4cUCUhpRSlIwBbJRLxYwBdJRHQK3yHgjQiRp1fZQoaAZoCWgPQwh/9iNFpKJxQJSGlFKUaBVLvWgWR0Ct8jlyBCladX2UKGgGaAloD0MIigRTzWxLcUCUhpRSlGgVS8poFkdArfJZcNYr8XV9lChoBmgJaA9DCHbEIRtIunNAlIaUUpRoFUu3aBZHQK3yhcyFfzB1fZQoaAZoCWgPQwju0LAYtQ5zQJSGlFKUaBVLvGgWR0Ct8pXhwVCYdX2UKGgGaAloD0MIZ2DkZU3ScUCUhpRSlGgVS9NoFkdArfKXI2fkFXV9lChoBmgJaA9DCNhl+E93qnBAlIaUUpRoFUu4aBZHQK3yoSA6Mit1fZQoaAZoCWgPQwhSKuEJPXtxQJSGlFKUaBVLxmgWR0Ct8tDNQj2SdX2UKGgGaAloD0MIG0tYG2Mdb0CUhpRSlGgVS8toFkdArfLXMY/FBXV9lChoBmgJaA9DCI1jJHvEd3JAlIaUUpRoFUvSaBZHQK3y11L8Jld1fZQoaAZoCWgPQwh8nGnCNhhwQJSGlFKUaBVLw2gWR0Ct8vXAmAskdX2UKGgGaAloD0MIYCLeOn9pcECUhpRSlGgVS8JoFkdArfMA66reZXV9lChoBmgJaA9DCHFa8KLvq3FAlIaUUpRoFUu6aBZHQK3zWwEhaDB1fZQoaAZoCWgPQwjEew4sh+xzQJSGlFKUaBVLvGgWR0Ct82HcL0BfdX2UKGgGaAloD0MIWwhyUIKdcUCUhpRSlGgVS9ZoFkdArfNtHe7+UHV9lChoBmgJaA9DCG/XS1PEbXFAlIaUUpRoFUvLaBZHQK3zg0F8ohJ1fZQoaAZoCWgPQwijeJW1TQtxQJSGlFKUaBVLu2gWR0Ct8+R8D0UXdX2UKGgGaAloD0MIDmjpCnaEcECUhpRSlGgVS79oFkdArfQJnezlcXV9lChoBmgJaA9DCA5nfjVHqHFAlIaUUpRoFUu4aBZHQK30GQg9vCN1fZQoaAZoCWgPQwiGdHgIYxByQJSGlFKUaBVLwWgWR0Ct9F2aMJhOdX2UKGgGaAloD0MIySHi5hTBdECUhpRSlGgVS75oFkdArfRyKYRdyHV9lChoBmgJaA9DCErs2t6uwXBAlIaUUpRoFUvGaBZHQK30fkI5YHR1fZQoaAZoCWgPQwjjUwCM53BxQJSGlFKUaBVL1GgWR0Ct/rTSThYOdX2UKGgGaAloD0MINXwL6wa3cUCUhpRSlGgVS7toFkdArf62/vfCRHV9lChoBmgJaA9DCM5UiEfiDnNAlIaUUpRoFUvJaBZHQK3+2G7jDKp1fZQoaAZoCWgPQwgZ529CIZ1zQJSGlFKUaBVLzGgWR0Ct/toaUA1fdX2UKGgGaAloD0MInWUWoZjwcUCUhpRSlGgVS+BoFkdArf8vUONHY3V9lChoBmgJaA9DCLX7VYCv0nJAlIaUUpRoFUvdaBZHQK3/NYvnKW91fZQoaAZoCWgPQwh+xRou8kxxQJSGlFKUaBVLwWgWR0Ct/1Xo1UEQdX2UKGgGaAloD0MIVix+U9iucECUhpRSlGgVS75oFkdArf9akXUH6nV9lChoBmgJaA9DCGdF1ETfWHBAlIaUUpRoFUvHaBZHQK3/XqrzXjF1fZQoaAZoCWgPQwgtmPijqG9wQJSGlFKUaBVLt2gWR0Ct/2EEs8PndX2UKGgGaAloD0MIQs77/7i7cUCUhpRSlGgVS8BoFkdArf/V/hESd3V9lChoBmgJaA9DCFlRg2nYWXFAlIaUUpRoFUuzaBZHQK3/2Vvddmh1fZQoaAZoCWgPQwhXlX1XxOtxQJSGlFKUaBVLumgWR0Ct//vKuB+XdX2UKGgGaAloD0MIEmxc/260ckCUhpRSlGgVS7poFkdArgHtPnB+F3V9lChoBmgJaA9DCKLxRBBn43FAlIaUUpRoFUu0aBZHQK4CAn3L3bp1fZQoaAZoCWgPQwg9DK1ODjZxQJSGlFKUaBVL1WgWR0CuAi7hegL7dX2UKGgGaAloD0MIVWthFtoMcUCUhpRSlGgVS+ZoFkdArgKWgOBlMHV9lChoBmgJaA9DCFH0wMegMXNAlIaUUpRoFUvhaBZHQK4CsTNdJJ51fZQoaAZoCWgPQwgE5EuooDJ0QJSGlFKUaBVL5GgWR0CuArySeRPodX2UKGgGaAloD0MITBx5IPLVc0CUhpRSlGgVS8ZoFkdArgLJpvgm7nV9lChoBmgJaA9DCJXurrMh23BAlIaUUpRoFUu/aBZHQK4C5E3sHB11fZQoaAZoCWgPQwgiT5KuGZduQJSGlFKUaBVLwWgWR0CuAvHIyTIOdX2UKGgGaAloD0MI41XWNgVnc0CUhpRSlGgVS8VoFkdArgLx0Qsf73V9lChoBmgJaA9DCJW7z/HRXHJAlIaUUpRoFUvHaBZHQK4C/xMFlkJ1fZQoaAZoCWgPQwiyaDo72VlwQJSGlFKUaBVL4GgWR0CuAxgeii7DdX2UKGgGaAloD0MIPSe9b/y3cECUhpRSlGgVS7hoFkdArgNblkpZwHV9lChoBmgJaA9DCFDDt7DuS3NAlIaUUpRoFUu5aBZHQK4DYYXwb2l1fZQoaAZoCWgPQwjWHYttUo5xQJSGlFKUaBVLrmgWR0CuA2dkJ8fFdX2UKGgGaAloD0MIPBHEeXiKckCUhpRSlGgVS8poFkdArgR02BJ7LXV9lChoBmgJaA9DCLqFrkTgVnNAlIaUUpRoFUvnaBZHQK4EiJswco91fZQoaAZoCWgPQwj6er5meeNxQJSGlFKUaBVL4WgWR0CuBI1P3ztkdX2UKGgGaAloD0MIn3HhQAhLckCUhpRSlGgVS7doFkdArgTLSXt0FXV9lChoBmgJaA9DCMB4Bg09SHJAlIaUUpRoFUvOaBZHQK4E6PI4lyB1fZQoaAZoCWgPQwgcJa/OMWdyQJSGlFKUaBVLsWgWR0CuBPAhr30xdX2UKGgGaAloD0MIZrtCH+yNc0CUhpRSlGgVS8doFkdArgUH0kGA1HV9lChoBmgJaA9DCCMRGsGG4HFAlIaUUpRoFUu7aBZHQK4FDSpiqhl1fZQoaAZoCWgPQwhlwi/1s2tyQJSGlFKUaBVLumgWR0CuBTEGiYb9dX2UKGgGaAloD0MILJyk+WPbcUCUhpRSlGgVS8xoFkdArgUvMW43FXV9lChoBmgJaA9DCP/NixPf+G5AlIaUUpRoFUvlaBZHQK4FQbONYKZ1fZQoaAZoCWgPQwjkLOxpBzBxQJSGlFKUaBVL1WgWR0CuBV0fozN2dX2UKGgGaAloD0MIfSJPki76b0CUhpRSlGgVS8JoFkdArgWP8fmtAHV9lChoBmgJaA9DCKIMVTFVvHJAlIaUUpRoFUvgaBZHQK4F08nuy/t1fZQoaAZoCWgPQwhjCWtjrM9zQJSGlFKUaBVL+mgWR0CuBiDkdV/+dX2UKGgGaAloD0MIzNJOzaWYcECUhpRSlGgVS71oFkdArgZ3Q0GeMHV9lChoBmgJaA9DCMed0sG61HBAlIaUUpRoFUvEaBZHQK4GnQFcIJJ1fZQoaAZoCWgPQwgZqmIqvT9zQJSGlFKUaBVLyWgWR0CuBq9hJAdGdX2UKGgGaAloD0MIUMO3sG4WcECUhpRSlGgVS7xoFkdArgbIQg9vCXV9lChoBmgJaA9DCEeNCTGX63BAlIaUUpRoFUu+aBZHQK4HCS7oSth1fZQoaAZoCWgPQwh4QURqGmhxQJSGlFKUaBVL0GgWR0CuBx55AyEddX2UKGgGaAloD0MIObUzTC1wckCUhpRSlGgVS9FoFkdArgcoMa0hNnV9lChoBmgJaA9DCAvPS8XGq3FAlIaUUpRoFUu9aBZHQK4HMiliz9l1fZQoaAZoCWgPQwjjiSDOA+FxQJSGlFKUaBVLz2gWR0CuBz3vH93sdX2UKGgGaAloD0MIV+2akBbBc0CUhpRSlGgVS9VoFkdArgdrUZvUBnV9lChoBmgJaA9DCFX3yOYqQ3JAlIaUUpRoFUu6aBZHQK4HjqGDcud1fZQoaAZoCWgPQwjieD4DKkJwQJSGlFKUaBVL1mgWR0CuB58gQpWndX2UKGgGaAloD0MIdVYL7LGIdECUhpRSlGgVS+NoFkdArgej7l7tzHV9lChoBmgJaA9DCLn6sUl+MG9AlIaUUpRoFUvPaBZHQK4IB9gnc+J1fZQoaAZoCWgPQwg6lQwA1SNuQJSGlFKUaBVLyWgWR0CuCEBltj0+dX2UKGgGaAloD0MIks7AyMvJckCUhpRSlGgVS89oFkdArgiyqbSZ0HV9lChoBmgJaA9DCGQipdn8sXBAlIaUUpRoFUvFaBZHQK4IvHFPznR1fZQoaAZoCWgPQwhB740hABJ0QJSGlFKUaBVLw2gWR0CuCMlaSs8xdX2UKGgGaAloD0MITOFBsytMcUCUhpRSlGgVS8toFkdArgj35k9U0nV9lChoBmgJaA9DCFYqqKh6uHFAlIaUUpRoFUvAaBZHQK4JTNVR1ox1fZQoaAZoCWgPQwjA6V2838RwQJSGlFKUaBVLymgWR0CuCVLP2PDHdX2UKGgGaAloD0MIGmt/Zzusc0CUhpRSlGgVS85oFkdArglWHLzPKXV9lChoBmgJaA9DCD9XW7H/ynFAlIaUUpRoFUvZaBZHQK4JX3TNMXd1fZQoaAZoCWgPQwjzy2CMyEdyQJSGlFKUaBVLt2gWR0CuCWhQemvXdX2UKGgGaAloD0MIYHZPHhbqb0CUhpRSlGgVS9ZoFkdArgl7mfXf7HV9lChoBmgJaA9DCC0nofQFXnNAlIaUUpRoFUvGaBZHQK4JrlYlpoN1fZQoaAZoCWgPQwji578Hb6xwQJSGlFKUaBVLyWgWR0CuCcsVUModdX2UKGgGaAloD0MIfJqTF9lgckCUhpRSlGgVS9FoFkdArgnk34sVcnV9lChoBmgJaA9DCBHhXwQNmW5AlIaUUpRoFUvEaBZHQK4KKBvJiiJ1fZQoaAZoCWgPQwiCH9Ww349LQJSGlFKUaBVLj2gWR0CuCjsVUModdX2UKGgGaAloD0MIXBsqxvllRkCUhpRSlGgVS5JoFkdArgqFEkSmInV9lChoBmgJaA9DCAmH3uIhPXFAlIaUUpRoFUvTaBZHQK4KkJBw++x1fZQoaAZoCWgPQwiTx9PyA2JmQJSGlFKUaBVN6ANoFkdArgqkguAZsXV9lChoBmgJaA9DCJ2dDI5STHFAlIaUUpRoFUu4aBZHQK4KshY/3WZ1fZQoaAZoCWgPQwjgDtQpD5FxQJSGlFKUaBVLwGgWR0CuCs/T1CgLdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1224,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-tuned/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d59eae45bf1bbaabbca9360f3d2d679c84d62f102ad6cc69232a5707cf8c20a
3
+ size 87929
ppo-LunarLander-v2-tuned/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeaf9514090140cdbd2456aaa089009368150258713bc60a819f79c640cdff1c
3
+ size 43201
ppo-LunarLander-v2-tuned/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-tuned/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.82482473438466, "std_reward": 12.870901477576275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T06:11:48.314264"}